已知,
⑴ 求的最小正周期;
⑵設、,,求的值.
(1);(2).

試題分析:本題只要考查三角函數(shù)的恒等變換、三角函數(shù)的周期、三角函數(shù)值求角等數(shù)學知識,考查熟練應用三角公式進行三角變換的能力、轉化能力和計算能力.第一問,先將中的括號展開,用倍角公式化簡,再用兩角和的正弦公式化簡,最后將化簡成的形式,利用求函數(shù)的最小正周期;(2)先利用第一問中的解出中的中的,而不是特殊角,則可以求出,而所求的通過化簡就是求,將轉化為,利用兩角差的余弦公式展開計算.
試題解析:⑴  2分,  4分,
的最小正周期  5分
⑵因為,,  6分,
所以  7分,
,  8分,
因為,所以  9分,
所以  10分,
  11分,
  12分。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),的最大值為2.
(1)求函數(shù)上的值域;
(2)已知外接圓半徑,角所對的邊分別是,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)其中向量,.
(1)求的最小值,并求使取得最小值的的集合;
(2)將函數(shù)的圖象沿軸向右平移,則至少平移多少個單位長度,才能使得到的函數(shù)的圖象關于軸對稱?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)求的最小正周期.
(2)若將的圖象向右平移個單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)求的值及函數(shù)的單調遞增區(qū)間;
(2)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=(2cos2x-1)sin2x+cos4x
(1)求f(x)的最小正周期及最大值。
(2)設A,B,C為△ABC的三個內角,若cosB=,f()=-,且角A為鈍角,求sinC

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)f(x)=sin xcos xcos 2x的最小正周期和振幅分別是(  ) .
A.π,1B.π,2C.2π,1 D.2π,2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的部分圖像如圖所示,如果,且,則等于(  )
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,函數(shù)(其中,,)與坐標軸的三個交點、、滿足,的中點,,則的值為(    )
A.B.C.8D.16

查看答案和解析>>

同步練習冊答案