分析 (1)由Sn2-(n2+n-1)Sn-(n2+n)=0,因式分解求得:[Sn-(n2+n)](Sn+1)=0,an>0,Sn>0,因此Sn=n2+n,當n≥2時,Sn-1=(n-1)2+(n-1)=n2-n,an=Sn-Sn-1=(n2+n)-(n2-n)=2n,當n=1時,a1=S1=2,成立,數列{an}的通項公式an=2n;
(2)由bn=$\frac{1}{{(n+2){a_n}}}$=$\frac{1}{2n(n+2)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+2}$),采用“裂項法”求得Tn=$\frac{3}{8}$-$\frac{1}{4}$($\frac{1}{n+1}$-$\frac{1}{n+2}$),因此Tn<$\frac{3}{8}$.
解答 解:(1)解:由Sn2-(n2+n-1)Sn-(n2+n)=0,
整理得:[Sn-(n2+n)](Sn+1)=0,
由an>0,
∴Sn>0,則Sn=n2+n,
∴當n=1時,a1=S1=2,
當n≥2時,Sn-1=(n-1)2+(n-1)=n2-n,
∴an=Sn-Sn-1=(n2+n)-(n2-n)=2n,
當n=1時,成立,
綜上,數列{an}的通項:an=2n,
數列{an}的通項公式an=2n;
(2)證明:bn=$\frac{1}{{(n+2){a_n}}}$=$\frac{1}{2n(n+2)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+2}$),
數列{bn}的前n項和為Tn,Tn=b1+b2+b3+…+bn,
=$\frac{1}{4}$(1-$\frac{1}{3}$)+$\frac{1}{4}$($\frac{1}{2}$-$\frac{1}{4}$)+$\frac{1}{4}$($\frac{1}{3}$-$\frac{1}{5}$)+…+$\frac{1}{4}$($\frac{1}{n-1}$-$\frac{1}{n+1}$)+$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+2}$),
=$\frac{1}{4}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$),
=$\frac{3}{8}$-$\frac{1}{4}$($\frac{1}{n+1}$-$\frac{1}{n+2}$),
∴${T_n}=\frac{3}{8}-\frac{1}{4}(\frac{1}{n+1}+\frac{1}{n+2})<\frac{3}{8}$.
點評 本題考查數列通項公式的求法,考查“裂項法”求數列的前n項和,數列與不等式的綜合應用,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | ±$\frac{1}{7}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | ±$\frac{\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{21}{13}$ | B. | $\frac{13}{8}$ | C. | $\frac{34}{21}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 偶函數 | B. | 奇函數 | ||
C. | 非奇非偶函數 | D. | 奇偶性與k的值有關 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com