已知函數(shù)f(x)是定義在[-5,5]上的偶函數(shù),f(x)在[0,5]上是單調(diào)函數(shù),且f(-3)<f(1),則下列不等式中一定成立的是( )
A.f(-1)<f(-3)
B.f(2)<f(3)
C.f(-3)<f(5)
D.f(0)>f(1)
【答案】分析:由于偶函數(shù)f(x)在[0,5]上是單調(diào)函數(shù),且f(-3)<f(1)⇒f(x)在[0,5]上是單調(diào)遞減,又f(-x)=f(x),從而可排除A、B、C,從而達(dá)到答案.
解答:解:∵偶函數(shù)f(x)在[0,5]上是單調(diào)函數(shù),且f(-3)<f(1),
∴f(x)在[0,5]上是單調(diào)遞減,在[-5,0]上是單調(diào)遞增,
∴f(0)>f(1),D正確;f(2)>f(3),可排除B;f(-1)>f(-3),可排除A;
又f(-x)=f(x),
∴f(-3)=f(3)>f(5),可排除C;
故選D.
點(diǎn)評(píng):本題考查奇偶性與單調(diào)性的綜合,著重考查學(xué)生對(duì)函數(shù)奇偶性與單調(diào)性的理解與應(yīng)用,特別注重排除法的應(yīng)用,屬于中檔題.