20.在平面直角坐標系xOy中,拋物線y=x2異于坐標原點O的兩個不同動點A、B,滿足$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,則△ABC的重心G的軌跡的普通方程為$y=3{x}^{2}+\frac{2}{3}$.

分析 設出AB的方程,A,B的坐標,進而把直線與拋物線方程聯(lián)立消去y,根據(jù)韋達定理求得x1+x2和x1x2的表達式,進而利用拋物線方程求得y1y2=的表達式,進而根據(jù)AO⊥BO推斷出x1x2+y1y2=0,求得b,設△AOB的重心為G(x,y),則x和y的表達式可得,聯(lián)立后消去k則x和y的關系式可得.

解答 解:顯然直線AB的斜率存在,記為k,AB的方程記為:y=kx+b,(b≠0),A(x1,y1),B(x2,y2),將直線方程代入y=x2得:x2-kx-b=0,則有:
△=k2+4b>0①,x1+x2=k②,x1x2=-b③,又y1=x12,y2=x22
∴y1y2=b2;
∵AO⊥BO,∴x1x2+y1y2=0,
得:-b+b2=0且b≠0,
∴b=1,代入①驗證,滿足;
故y1+y2=k(x1+x2)+2=k2+2;
設△AOB的重心為G(x,y),
則x=$\frac{{x}_{1}+{x}_{2}}{3}$=$\frac{k}{3}$④,y=$\frac{{y}_{1}+{y}_{2}}{3}$=$\frac{{k}^{2}+2}{3}$⑤,
由④⑤兩式消去參數(shù)k得:G的軌跡方程為$y=3{x}^{2}+\frac{2}{3}$.
故答案為:$y=3{x}^{2}+\frac{2}{3}$.

點評 本題主要考查了拋物線的簡單性質(zhì).上述求軌跡的方法稱為“參數(shù)法”,一般先設法將動點坐標用“參數(shù)”表示,再消參數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.若a是函數(shù)f(x)=3x-log${\;}_{\frac{1}{3}}$x的零點,且f(b)<0,則( 。
A.0<b<aB.0<a<bC.a=bD.a≤b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在四面體A-BCD中,棱長為4,M是BC的中點,點P在線段AM上運動,(點P不與A,M重合),過點P做直線l⊥平面ABC,l與平面BCD交于點Q.給出下列命題,其中正確的是①②
①BC⊥平面AMD
②點Q一定在直線DM上
③VC-AMD=4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在遞減數(shù)列{an}中,an=-2n2+λn,求實數(shù)λ的取值范圍是(  )
A.(-∞,2)B.(-∞,3)C.(-∞,4)D.(-∞,6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.函數(shù)f(x)=tan(2x+φ)(-$\frac{π}{2}$<φ<$\frac{π}{2}$)的一個對稱中心為($\frac{π}{3}$,0),則φ的值是( 。
A.-$\frac{π}{6}$B.$\frac{π}{3}$C.-$\frac{π}{3}$D.-$\frac{π}{6}$或$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,且∠ABC=120°,點E是棱PC的中點,平面ABE與棱PD交于點F.
(1)求證:AB∥EF;
(2)若PA=PD=AD=2,且平面PAD⊥平面ABCD,
求①二面角E-AF-D的二面角的余弦值;
   ②在線段PC上是否存在一點H,使得直線BH與平面AEF所成角等于60°,若存在,確定H的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知二次函數(shù)f(x)=2x2+1,過點(1,0)做直線l1,l2與f(x)的圖象相切于A,B兩點,則直線AB的方程為( 。
A.$\sqrt{6}$x-y+2=0B.x-$\sqrt{6}$y+1=0C.4x-y+2=0D.x-4y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知A(xA,yA)是單位圓上(圓心在坐標原點O)任意一點,且射線OA繞O點逆時針旋轉(zhuǎn)30°到OB交單位圓于點B(xB,yB),則xA-yB的最大值為(  )
A.$\sqrt{2}$B.$\frac{\sqrt{3}}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列命題中是假命題的是( 。
A.?x∈(0,$\frac{π}{2}$),x>sinxB.?x0∈R,sinx0+cosx0=2
C.“?x∈R,3x>0”D.?x0∈R,x0+$\frac{1}{x_0}$=-3

查看答案和解析>>

同步練習冊答案