1.已知A(xA,yA)是單位圓上(圓心在坐標(biāo)原點(diǎn)O)任意一點(diǎn),且射線OA繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)30°到OB交單位圓于點(diǎn)B(xB,yB),則xA-yB的最大值為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{3}}{2}$C.1D.$\frac{1}{2}$

分析 設(shè)A(cosα,sinα),B(cos(α+30°),sin(α+30°)),利用和差公式即可得出.

解答 解:設(shè)A(cosα,sinα),B(cos(α+30°),sin(α+30°)),
則xA-yB=cosα-sin(α+30°)=cosα-($\frac{\sqrt{3}}{2}$sinα+$\frac{1}{2}$cosα)=$\frac{1}{2}$cosα-$\frac{\sqrt{3}}{2}$sinα=sin$(\frac{π}{6}-α)$≤1,
故選:C.

點(diǎn)評(píng) 本題考查了三角函數(shù)的和差、單位圓,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知△ABC的三個(gè)內(nèi)角A,B,C成等差數(shù)列,求證:對(duì)應(yīng)三邊a,b,c滿足$\frac{1}{a+b}$+$\frac{1}{b+c}$=$\frac{3}{a+b+c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在平面直角坐標(biāo)系xOy中,拋物線y=x2異于坐標(biāo)原點(diǎn)O的兩個(gè)不同動(dòng)點(diǎn)A、B,滿足$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,則△ABC的重心G的軌跡的普通方程為$y=3{x}^{2}+\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.由曲線y2=2x和直線y=x-4所圍成的圖形的面積( 。
A.18B.19C.20D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若直線y=a與正弦曲線y=sinx,x∈[0,2π]的圖象只有一個(gè)交點(diǎn),則a=±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)函數(shù)f(x)=|2x+1|+|x-a|,a∈R.
(Ⅰ)當(dāng)a=2時(shí),求不等式f(x)<4的解集.
(Ⅱ)當(dāng)a<$-\frac{1}{2}$時(shí),對(duì)于?x∈(-∞,-$\frac{1}{2}$],都有f(x)+x≥3成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.四棱錐P-ABCD內(nèi)接于球,底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,則此球的表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知A,B為拋物線y2=2px(p>0)上的兩動(dòng)點(diǎn),F(xiàn)為其焦點(diǎn),且滿足∠AFB=60°,過(guò)弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線,垂足為N,|MN|=λ|AB|,則λ的最大值為( 。
A.1B.$\frac{2\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知f(x)=|x+1|+|x+2|+…+|x+2016|+|x-1|+|x-2|+…+|x-2016|(x∈R),且f(a2-3a+2)=f(a-1),則滿足條件的所有整數(shù)a的和是6.

查看答案和解析>>

同步練習(xí)冊(cè)答案