已知為正整數(shù),試比較與的大小 .
當(dāng)n=1時(shí),<;當(dāng)n=2時(shí),=; 當(dāng)n=3時(shí),>; 當(dāng)n=4時(shí),=;,當(dāng)時(shí),<
【解析】
試題分析:解:當(dāng)n=1時(shí),<; 1分
當(dāng)n=2時(shí),=; 2分
當(dāng)n=3時(shí),>; 3分
當(dāng)n=4時(shí),=; 4分
當(dāng)n=5時(shí),<; 當(dāng)n=6時(shí),<
猜想:當(dāng)時(shí),< 5分
下面下面用數(shù)學(xué)歸納法證明:
(1)當(dāng)n=5時(shí),由上面的探求可知猜想成立 6分
(2)假設(shè)n=k()時(shí)猜想成立,即 7分
則,
,
當(dāng)時(shí)
,從而
所以當(dāng)n=k+1時(shí),猜想也成立 9分
綜合(1)(2),對猜想都成立 10分
考點(diǎn):數(shù)學(xué)歸納法
點(diǎn)評:對于不等式的證明可以通過通過對于n的討論來得到,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com