【題目】陜西省洛川地處北緯35°-36°,東經(jīng)109°,晝夜溫差,是國(guó)內(nèi)外專家公認(rèn)的世界最佳蘋(píng)果優(yōu)生區(qū),是國(guó)家生態(tài)建設(shè)示范試點(diǎn).近幾年,果農(nóng)為了提高經(jīng)濟(jì)效益,增加了廣告和包裝的投資費(fèi)用,5年內(nèi)果農(nóng)投入的廣告和包裝費(fèi)用(萬(wàn)元)與銷(xiāo)售額(萬(wàn)元)之間有下面對(duì)應(yīng)數(shù)據(jù):

2

4

5

6

8

30

40

60

50

70

(1)假設(shè)之間線性相關(guān),求回歸直線方程;

(2)預(yù)測(cè)廣告和包裝費(fèi)用為10(萬(wàn)元)時(shí)銷(xiāo)售額是多少?

【答案】(1);(2)該果農(nóng)銷(xiāo)售額是82.5萬(wàn)元.

【解析】試題分析:(1)根據(jù)表格中的數(shù)據(jù)分別求出公式中所需的量,代入公式求出,將樣本的中心點(diǎn)坐標(biāo)代入回歸方程可得進(jìn)而可得結(jié)果;(2)代入(1)中所求回歸方程即可得結(jié)果.

試題解析:(1)計(jì)算,

, ,則回歸直線方程是

(2)當(dāng)時(shí), ,則該果農(nóng)銷(xiāo)售額是82.5萬(wàn)元.

【方法點(diǎn)晴】本題主要考查線性回歸方程及回歸分析,屬于難題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)畫(huà)出散點(diǎn)圖,確定兩個(gè)變量具有線性相關(guān)關(guān)系;②計(jì)算的值;③計(jì)算回歸系數(shù);④寫(xiě)出回歸直線方程為;(2) 回歸直線過(guò)樣本點(diǎn)中心是一條重要性質(zhì),利用線性回歸方程可以估計(jì)總體,幫助我們分析兩個(gè)變量的變化趨勢(shì).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)用反證法證明:在上,不存在不同的兩點(diǎn),使得的圖象在這兩點(diǎn)處的切線相互平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子中裝有5張編號(hào)依次為1、2、3、4、5的卡片,這5 張卡片除號(hào)碼外完全相同.現(xiàn)進(jìn)行有放回的連續(xù)抽取2 次,每次任意地取出一張卡片.

(1)求出所有可能結(jié)果數(shù),并列出所有可能結(jié)果;

(2)求事件“取出卡片號(hào)碼之和不小于7 或小于5”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若 都是從0,1,2,3,4五個(gè)數(shù)中任取的一個(gè)數(shù),求上述函數(shù)有零點(diǎn)的概率;

(2)若, 都是從區(qū)間上任取的一個(gè)數(shù),求成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱中,,

,側(cè)棱底面.

I)證明:平面平面

II)若直線與平面所成的角的余弦值為,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知是邊長(zhǎng)為的正方形的中心,點(diǎn)分別是的中點(diǎn),沿對(duì)角線把正方形折成二面角.

(1)證明:四面體的外接球的體積為定值,并求出定值;

(2)若二面角為直二面角,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若圖,在正方體中, 分別是的中點(diǎn).

(1)求證:平面平面;

(2)在棱上是存在一點(diǎn),使得平面,若存在,求的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求在區(qū)間上的最大值;

(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝)一書(shū)中有關(guān)于三階幻方的問(wèn)題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對(duì)角線上的三個(gè)數(shù)的和都相等,我們規(guī)定:只要兩個(gè)幻方的對(duì)應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個(gè)數(shù)是( )

8

3

4

1

5

9

6

7

2

A. 9 B. 8 C. 6 D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案