4.已知M是函數(shù)f(x)=e-2|x-1|+2sin[π(x-$\frac{1}{2}$)]在x∈[-3,5]上的所有零點(diǎn)之和,則M的值為( 。
A.4B.6C.8D.10

分析 函數(shù)的零點(diǎn),轉(zhuǎn)化為兩個(gè)函數(shù)的圖形的交點(diǎn)的橫坐標(biāo),利用函數(shù)的對(duì)稱性,求解即可.

解答 解:函數(shù)f(x)=e-2|x-1|+2sin[π(x-$\frac{1}{2}$)]在x∈[-3,5]上的所有零點(diǎn),就是e-2|x-1|=-2sin[π(x-$\frac{1}{2}$)]在x∈[-3,5]上的所有的根,即e-2|x-1|=2cosπx在x∈[-3,5]上的所有根,就是函數(shù)y=e-2|x-1|與y=2cosπx,交點(diǎn)的橫坐標(biāo),畫出兩個(gè)函數(shù)的圖象如圖,因?yàn)閮蓚(gè)函數(shù)都關(guān)于x=1對(duì)稱,兩個(gè)函數(shù)共有8個(gè)交點(diǎn),所以函數(shù)f(x)=e-2|x-1|+2sin[π(x-$\frac{1}{2}$)]在x∈[-3,5]上的所有零點(diǎn)之和,M=8.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn)與方程根的關(guān)系,考查數(shù)形結(jié)合以及轉(zhuǎn)化思想的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓Γ:$\frac{x^2}{a^2}$+y2=1(a>1)的左焦點(diǎn)為F1,右頂點(diǎn)為A1,上頂點(diǎn)為B1,過F1,A1,B1三點(diǎn)的圓P的圓心坐標(biāo)為($\frac{{\sqrt{3}-\sqrt{2}}}{2}$,$\frac{{1-\sqrt{6}}}{2}$).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l:y=kx+m(k,m為常數(shù),k≠0)與橢圓Γ交于不同的兩點(diǎn)M和N.
(i)當(dāng)直線l過E(1,0),且$\overrightarrow{EM}$+2$\overrightarrow{EN}$=$\overrightarrow 0$時(shí),求直線l的方程;
(ii)當(dāng)坐標(biāo)原點(diǎn)O到直線l的距離為$\frac{{\sqrt{3}}}{2}$時(shí),求△MON面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.命題“對(duì)任意的x∈R,x3-x+1≤0”的否定是( 。
A.不存在x∈R,x3-x+1≤0B.存在x∈R,x3-x+1≤0
C.對(duì)任意的x∈R,x3-x+1>0D.存在x∈R,x3-x+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若(x+y)3(2x-y+a)5的展開式中各項(xiàng)系數(shù)的和為256,則該展開式中含字母x且x的次數(shù)為1的項(xiàng)的系數(shù)為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知某幾何體的俯視圖是如圖所示的邊長(zhǎng)為2的正方形,主視圖與左視圖是邊長(zhǎng)為2的正三角形,則其側(cè)面積( 。
A.4B.$4\sqrt{3}$C.$4(1+\sqrt{3})$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{{2}^{x}}-1,x<1}\\{\frac{lnx}{{x}^{2}},x≥1}\end{array}\right.$,則函數(shù)y=|f(x)|-$\frac{1}{8}$的零點(diǎn)個(gè)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=1+tsinα}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2=4$\sqrt{2}$ρsin(θ+$\frac{π}{4}$)-4.
(Ⅰ)求曲線C2的直角坐標(biāo)方程,并指出其表示何種曲線;
(Ⅱ)若曲線C1與曲線C2交于A、B兩點(diǎn),求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知四棱錐P-ABCD的頂點(diǎn)都在球O的球面上,底面ABCD是矩形,平面PAD⊥底面ABCD,△PAD為正三角形,AB=2AD=4,則球O的表面積為(  )
A.$\frac{56π}{3}$B.$\frac{64π}{3}$C.24πD.$\frac{80π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸入n=10,則輸出S=( 。
A.$\frac{4}{9}$B.$\frac{5}{11}$C.$\frac{6}{13}$D.$\frac{36}{55}$

查看答案和解析>>

同步練習(xí)冊(cè)答案