18.已知雙曲線的一條漸近線過點$({2,\sqrt{3}})$,且雙曲線的一個焦點在拋物線${x^2}=4\sqrt{7}y$的準線上,則雙曲線的標準方程為( 。
A.$\frac{y^2}{3}-\frac{x^2}{4}=1$B.$\frac{y^2}{4}-\frac{x^2}{3}=1$C.$\frac{x^2}{3}-\frac{y^2}{4}=1$D.$\frac{x^2}{4}-\frac{y^2}{3}=1$

分析 由拋物線標準方程易得其準線方程,從而可得雙曲線的焦點,再根據(jù)焦點在y軸上的雙曲線的漸近線方程,得a、b的另一個方程,求出a、b,即可得到雙曲線的標準方程.

解答 解:由題意,$\frac{a}$=$\frac{\sqrt{3}}{2}$,
∵拋物線${x^2}=4\sqrt{7}y$的準線方程為y=-$\sqrt{7}$,雙曲線的一個焦點在拋物線${x^2}=4\sqrt{7}y$的準線上,
∴c=$\sqrt{7}$,
∴a2+b2=c2=7,
∴a=2,b=$\sqrt{3}$,
∴雙曲線的方程為$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{4}$=1.
故選A.

點評 本題主要考查雙曲線和拋物線的標準方程與幾何性質,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知圓C:x2+y2-4x+3=0,
(1)求過M(3,2)點的圓的切線方程;
(2)直線l過點$N({\frac{3}{2},\frac{1}{2}})$且被圓C截得的弦長最短時,求直線l的方程;
(3)過點(1,0)的直線m與圓C交于不同的兩點A、B,線段AB的中點P的軌跡為C1,直線$y=k(x-\frac{5}{2})$與曲線C1只有一個交點,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為2,那么雙曲線的漸近線方程為( 。
A.$\sqrt{2}x±y=0$B.x±y=0C.2x±y=0D.$\sqrt{3}x±y=0$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.給定集合S={x1,x2,…,xn}(n≥2,xk∈R且xk≠0,1≤k≤n),(且),定義點集T={(xi,xj)|xi∈S,xj∈S}.若對任意點A1∈T,存在點A2∈T,使得$\overrightarrow{O{A_1}}•\overrightarrow{O{A_2}}=0$(O為坐標原點),則稱集合S具有性質P.給出以下四個結論:
①{-5,5}具有性質P;
②{-2,1,2,4}具有性質P;
③若集合S具有性質P,則S中一定存在兩數(shù)xi,xj,使得xi+xj=0;
④若集合S具有性質P,xi是S中任一數(shù),則在S中一定存在xj,使得xi+xj=0.
其中正確的結論有①③.(填上你認為所有正確的結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.F1、F2為雙曲線C:$\frac{x^2}{9}-\frac{y^2}{4}=1$的左、右焦點,點M在雙曲線上且∠F1MF2=60°,則${S_{△{F_1}M{F_2}}}$=4$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線方程是 y=$\frac{{\sqrt{5}}}{2}$x,則該雙曲線的離心率等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.二進制數(shù)1101100(2)化為十進制數(shù)是108.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦距為$2\sqrt{5}$,且雙曲線的一條漸近線方程為x-2y=0,則雙曲線的方程為(  )
A.$\frac{x^2}{4}-{y^2}=1$B.$\frac{3{x}^{2}}{20}$-$\frac{3{y}^{2}}{5}$=1C.$\frac{{3{x^2}}}{20}-\frac{{3{y^2}}}{5}=1$D.$\frac{{3{x^2}}}{5}-\frac{{3{y^2}}}{20}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD.
(1)求證:直線ED⊥平面PAC;
(2)若直線PE與平面PAC所成的角的正弦值為$\frac{\sqrt{5}}{5}$,求二面角A-PC-D的余弦值.

查看答案和解析>>

同步練習冊答案