分析 先利用矩陣的乘法公式求出MN,由此能利用矩陣的初等變換能求出矩陣MN的逆矩陣.
解答 解:∵矩陣M=$[\begin{array}{l}{3}&{0}\\{0}&{1}\end{array}]$,N=$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$,
∴MN=$[\begin{array}{l}{3}&{0}\\{0}&{1}\end{array}]$$[\begin{array}{l}{1}&{0}\\{0}&{\frac{1}{2}}\end{array}]$=$[\begin{array}{l}{3}&{0}\\{0}&{\frac{1}{2}}\end{array}]$,
∵$[\begin{array}{l}{3}&{0}&{\;}&{1}&{0}\\{0}&{\frac{1}{2}}&{\;}&{0}&{1}\end{array}]$→$[\begin{array}{l}{1}&{0}&{\;}&{\frac{1}{3}}&{0}\\{0}&{\frac{1}{2}}&{\;}&{0}&{1}\end{array}]$→$[\begin{array}{l}{1}&{0}&{\;}&{\frac{1}{3}}&{0}\\{0}&{1}&{\;}&{0}&{2}\end{array}]$,
∴矩陣MN的逆矩陣是$[\begin{array}{l}{\frac{1}{3}}&{0}\\{0}&{2}\end{array}]$.
故答案為:$[\begin{array}{l}{\frac{1}{3}}&{0}\\{0}&{2}\end{array}]$.
點評 本題考查兩個矩陣乘積的逆矩陣的求法,是中檔題,解題時要認真審題,注意矩陣的乘法公式和矩陣的初等變換的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
x | $-\frac{π}{4}$ | $\frac{π}{12}$ | $\frac{5π}{12}$ | $\frac{3π}{4}$ | $\frac{13π}{12}$ |
ωx+ϕ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
f(x) | 2 | 6 | 2 | -2 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{7}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | $\sqrt{5}$ | C. | $\frac{5}{2}$ | D. | $\frac{\sqrt{10}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3x-5y-11=0 | B. | 5x-3y-13=0 | C. | 5x+3y-7=0 | D. | 3x+5y-1=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com