【題目】(題文)已知函數(shù)),其中

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若函數(shù)僅在處有極值,求的取值范圍;

(3)若對(duì)于任意的,不等式上恒成立,求的取值范圍.

【答案】(1)見解析;(2);(3)

【解析】

解:

當(dāng)時(shí),

,解得,,.當(dāng)變化時(shí),,的變化情況如下表:



0




2




0


0


0




極小值


極大值


極小值


所以,內(nèi)是增函數(shù),在內(nèi)是減函數(shù).

)解:,顯然不是方程的根.

為使僅在處有極值,必須成立,即有

解些不等式,得.這時(shí),是唯一極值.因此滿足條件的的取值范圍是

)解:由條件,可知,從而恒成立.

當(dāng)時(shí),;當(dāng)時(shí),.因此函數(shù)上的最大值是兩者中的較大者.為使對(duì)任意的,不等式上恒成立,當(dāng)且僅當(dāng),即,在上恒成立.所以,因此滿足條件的的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中.己知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=4.
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)系方程;
(2)直線l與曲線C相交于A、B兩點(diǎn),求∠AOB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 =1(a>b>0)經(jīng)過點(diǎn)P(﹣2,0)與點(diǎn)(1,1).
(1)求橢圓的方程;
(2)過P點(diǎn)作兩條互相垂直的直線PA,PB,交橢圓于A,B.
①證明直線AB經(jīng)過定點(diǎn);
②求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),命題:實(shí)數(shù)滿足不等式;命題:實(shí)數(shù)滿足不等式,若的充分不必要條件,則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移 個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在 上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)上的點(diǎn)到它的兩個(gè)焦點(diǎn)的距離之和為4,以橢圓C的短軸為直徑的圓O經(jīng)過兩個(gè)焦點(diǎn),A,B是橢圓C的長(zhǎng)軸端點(diǎn).

(1)求橢圓C的標(biāo)準(zhǔn)方程和圓O的方程;
(2)設(shè)P、Q分別是橢圓C和圓O上位于y軸兩側(cè)的動(dòng)點(diǎn),若直線PQ與x平行,直線AP、BP與y軸的交點(diǎn)即為M、N,試證明∠MQN為直角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)解不等式:

(2)有4名男生和3名女生

i)選出4人去參加座談會(huì),如果3人中必須既有男生又有女生,有多少種選法?

ii)7人排成一排,甲乙二人之間恰好有2個(gè)人,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= lnxx,其中a>0.

(1)f(x)(0,+∞)上存在極值點(diǎn),求a的取值范圍;

(2)設(shè)a(1,e],當(dāng)x1(0,1),x2(1,+∞)時(shí),記f(x2)-f(x1)的最大值為M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)準(zhǔn)備在開學(xué)時(shí)舉行一次大學(xué)一年級(jí)學(xué)生座談會(huì),擬邀請(qǐng)20名來自本校機(jī)械工程學(xué)院、海洋學(xué)院、醫(yī)學(xué)院、經(jīng)濟(jì)學(xué)院的學(xué)生參加,各學(xué)院邀請(qǐng)的學(xué)生數(shù)如下表所示:

學(xué)院

機(jī)械工程學(xué)院

海洋學(xué)院

醫(yī)學(xué)院

經(jīng)濟(jì)學(xué)院

人數(shù)

4

6

4

6

(Ⅰ)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,求這3名學(xué)生中任意兩個(gè)均不屬于同一學(xué)院的概率;
(Ⅱ)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,設(shè)來自醫(yī)學(xué)院的學(xué)生數(shù)為ξ,求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案