“x2-2x<0”是“|x|<2”成立的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分又不必要條件
【答案】分析:解出不等式x2-2x<0和|x|<2的解集,分析它們之間的包含關(guān)系即可得出結(jié)論.
解答:解:由x2-2x<0得0<x<2,此時滿足|x|<2,由|x|<2,得-2<x<2,取x=-1時,x2-2x>0,
所以“x2-2x<0”是“|x|<2”成立的充分不必要條件.
故選A.
點評:判斷充要條件的方法是:
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.