已知橢圓:x2+2y2=a,(a>0)的左焦點到直線y=x-2的距離為2
2
,求該橢圓的標準方程.
考點:橢圓的標準方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:橢圓:x2+2y2=a,(a>0)轉(zhuǎn)化為標準方程,由已知條件利用點到直線距離公式得
-
a
2
-2
2
=
2
2
,由此能求出橢圓的標準方程.
解答: 解:橢圓:x2+2y2=a,(a>0)轉(zhuǎn)化為標準方程,得:
x2
a
+
y2
a
2
=1

c2=a-
a
2
=
a
2
,
c=
a
2

左焦點坐標(-
a
2
,0),
由點到直線距離公式得:
-
a
2
-2
2
=
2
2
,
解得a=8,
∴橢圓的標準方程為:
x2
8
+
y2
4
=1
點評:本題考查橢圓的標準方程的求法,是中檔題,解題時要認真審題,注意橢圓性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sin
π
2
x,對任意的實數(shù)t,記f(x)在[t,t+1]上的最大值為M(t),最小值為m(t),則函數(shù)
h(t)=M(t)-m(t)的值域為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=loga(a-x)(x-a-2)(a>0,a≠1)在區(qū)間(2,
5
2
)內(nèi)單調(diào)遞減,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,四棱錐P-ABCD的底面ABCD為直角梯形,且AD∥BC,AD⊥AB,E是PC的中點,PA=BC=2AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(1)求證:DE∥平面PAB;
(2)求證:平面PAD⊥平面PAB;
(3)求三棱錐D-PAC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)某校高三一班一次數(shù)學考試成績整理得到下側(cè)頻率分布直方圖,根據(jù)頻率分布直方圖估計該班的學生數(shù)學成績的眾數(shù)、中位數(shù)分別為( 。
A、105,103
B、115,113.3
C、125,113.3
D、115,125

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
log
1
2
2x-2
,求函數(shù)定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-mx.
(1)設(shè)函數(shù)在x=1處的切線斜率為-2,討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知m≥
1
e
,且m,n∈(0,+∞),求證;(mn)e≤em+n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cos
3x
2
,sin
3x
2
),
b
=(cos
x
2
,-sin
x
2
),x∈[-
π
2
,
π
2
],
(1)求證:(
a
-
b
)⊥(
a
+
b
);
(2)|
a
+
b
|=
1
3
,求2cosx的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x+
x-2
的最小值是
 

查看答案和解析>>

同步練習冊答案