定義在R上的偶函數(shù)y=f(x)滿足:
①對x∈R都有f(x+6)=f(x)+f(3)
②f(-5)=-1;
③當(dāng)x1,x2∈[0,3]且x1≠x2時,都有
f(x1)-f(x2)
x1-x2
>0則
(1)f(2009)=______;
(2)若方程f(x)=0在區(qū)間[a,6-a]上恰有3個不同實根,實數(shù)a的取值范圍是______.
由題意,(1)因為y=f(x)是R上的偶函數(shù),所以f(x)=f(-x),因為f(x+6)=f(x)+f(3),
所以f(-x+6)=f(-x)+f(3)=f(x)+3=f(x+6),所以f(x)關(guān)于x=6對稱,
因為f(6-x)=f(6+x),所以f(-x)=f(x+12)=f(x),所以f(x)是以12為周期的函數(shù),
∴f(2009)=f(5)=f(-5)=-1;
 (2)根據(jù)當(dāng)x1,x2∈[0,3]且x1≠x2時,都有
f(x1)-f(x2)
x1-x2
>0,可知函數(shù)在[0,3]上單調(diào)遞增
又f(x)為偶函數(shù),故在[-3,0]上為減函數(shù).
令x=-3,則由f(x+6)=f(x)+f(3)得f(3)=f(-3)+f(3)=2f(3),故f(3)=0
因為f(x+6)=f(x)+f(3),所以f(3)=f(-3)+f(3)=0,f(x)關(guān)于x=6對稱,所以f(9)=0,因為y=f(x)是R上的偶函數(shù),f(-9)=0,f(-3)=0,因 為f(x)在[0,3]上是增函數(shù),所以[0,3]上只有一解為3,對稱性[-3,0]只有一解為-3,因為f(x+6)=f(x)+f(3),且f(x)在[0,3]上是增函數(shù),所以f(x)在[6,9]上是增函數(shù),所以[6,9]上只有一解為9,因為f(x)關(guān)于x=6對稱,所以f(x)在[3,6]上只有一解為3,由對稱性知[-9,-6],[-6,-3]各只有一解-9,-3,
要使方程f(x)=0在區(qū)間[a,6-a]上恰有3個不同實根,則a>-9,6-a≤9
∴實數(shù)a的取值范圍是(-9-3]
故答案為-1,(-9-3]
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

17、定義在R上的偶函數(shù)y=f(x)滿足:
①對任意x∈R都有f(x+2)=f(x)+f(1)成立;
②f(0)=-1;
③當(dāng)x∈(-1,0)時,都有f(x)<0.
若方程f(x)=0在區(qū)間[a,3]上恰有3個不同實根,則實數(shù)a的取值范圍是
(-3,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f(x)滿足:①對x∈R都有f(x+6)=f(x)+f(3);②當(dāng)x1,x2∈[0,3]且x1≠x2時,都有
f(x1)-f(x2)x1-x2
>0
,若方程f(x)=0在區(qū)間[a,8-a]上恰有3個不同實根,實數(shù)a的取值范圍是
(-7,-3)
(-7,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f(x)在(-∞,0]上遞增,函數(shù)f(x)的一個零點為-
1
2
,求滿足f(log
1
9
x)≥0的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f(x)滿足f(x+2)=f(x),且當(dāng)x∈(0,1]時單調(diào)遞增,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)y=f (x)滿足f ( x+2 )=-f (x)對所有實數(shù)x都成立,且在[-2,0]上單調(diào)遞增,a=f(
3
2
),b=f(
7
2
),c=f(log 
1
2
8),則a,b,c的由大到小順序是(用“>”連 結(jié))
 

查看答案和解析>>

同步練習(xí)冊答案