8.下列三角函數(shù)值的符號判斷正確的是( 。
A.sin156°<0B.$cos\frac{16π}{5}>0$C.$tan({-\frac{17π}{8}})<0$D.tan556°<0

分析 根據(jù)角所在的象限、誘導(dǎo)公式、三角函數(shù)值的符號逐項(xiàng)判斷即可.

解答 解:A、因?yàn)?56°在第二象限,所以sin156°>0,故A錯誤;
B、因?yàn)?cos\frac{16π}{5}=cos(3π+\frac{π}{5})$=$-cos\frac{π}{5}<0$,所以B錯誤;
C、因?yàn)?tan(-\frac{17π}{8})=tan(-2π-\frac{π}{8})$=$tan(-\frac{π}{8})<0$,所以C正確;
D、因?yàn)閠an556°=tan(360°+196°)=tan196°,且196°在第三象限,
所以tan556°>0,故D錯誤;
故選:C.

點(diǎn)評 本題考查了三角函數(shù)的誘導(dǎo)公式,及三角函數(shù)在各象限的符號的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{-\frac{1}{x},x<0}\end{array}\right.$,若f(a)=1,則實(shí)數(shù)a=0或-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知一個幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{{(4+π)\sqrt{3}}}{3}$B.$\frac{(4+π)\sqrt{3}}{2}$C.$\frac{(4+π)\sqrt{3}}{6}$D.(4+π)$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知f(x)滿足對?x∈R,f(-x)+f(x)=0,且x≥0時,f(x)=ex+m(m為常數(shù)),則f(-ln5)的值為(  )
A.4B.-4C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知正實(shí)數(shù)a,b滿足a+b=4,則$\frac{1}{a+1}+\frac{1}{b+3}$的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等比數(shù)列{an}中,a1+a2=1,a4+a5=-8,則$\frac{{{a_7}+{a_8}}}{{{a_5}+{a_6}}}$=(  )
A.-8B.-4C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在△ABC中,角A、B、C對應(yīng)的邊分別為a,b,c,分別根據(jù)下列條件解三角形,其中有兩個解的是( 。
A.a=30,b=40,A=30°B.a=25,b=30,A=150°
C.a=8,b=16,A=30°D.a=72,b=60,A=135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知F1、F2分別為雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn),若雙曲線C右支上一點(diǎn)P滿足|PF1|=3|PF2|且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=a2,則雙曲線C的離心率為(  )
A.3B.$\sqrt{3}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=x2-2x(x∈[-1,2])的值域?yàn)榧螦,g(x)=ax+2(x∈[-1,2])的值域?yàn)榧螧.若A⊆B,則實(shí)數(shù)a的取值范圍是$(-∞,-\frac{3}{2}]∪[3,+∞)$.

查看答案和解析>>

同步練習(xí)冊答案