A. | 2-2$\sqrt{2}$ | B. | 2$\sqrt{2}$-2 | C. | $\sqrt{2}$-1 | D. | 1-$\sqrt{2}$ |
分析 通過韋達(dá)定理可求sinα+cosα=t,sinαcosα=t,利用sin2α+cos2α=1,則可得答案.
解答 解:∵cosα,sinα是函數(shù)f(x)=x2-tx+t(t∈R)的兩個(gè)零點(diǎn),
∴sinα+cosα=t,sinαcosα=t,
由sin2α+cos2α=1,
得(sinα+cosα)2-2sinαcosα=1,即t2-2t=1,解得t=$1-\sqrt{2}$,或t=1+$\sqrt{2}$(舍).
∴sin2α=2sinαcosα=2t=$2-2\sqrt{2}$.
故選:A.
點(diǎn)評(píng) 本題考查三角函數(shù)化簡求值,注意同角三角函數(shù)的基本關(guān)系式的應(yīng)用,考查計(jì)算能力,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8π | B. | 4π | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i | B. | 1 | C. | -i | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x+y+1=0 | B. | x-y+1=0 | C. | x+y-1=0 | D. | x-y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com