分析 (1)求出導數(shù),利用f'(1)=-1,求解即可.
(2)設g(x)=lnx-x,則$g'(x)=\frac{1}{x}-1$,判斷函數(shù)的單調(diào)性,求出最值即可得到結果.
解答 解:(1)對f(x)求導,得f'(x)=1+lnx+2ax,
所以f'(1)=1+2a=-1,解得a=-1.
(2)由f(x)-mx≤-1,得xlnx-x2-mx≤0,
因為x∈(0,+∞),所以對于任意x∈(0,+∞),都有l(wèi)nx-x≤m.
設g(x)=lnx-x,則$g'(x)=\frac{1}{x}-1$,
令g'(x)=0,解得x=1,
當x變化時,g(x)與g'(x)的變化情況如下表:
x | (0,1) | 1 | (1,+∞) |
g'(x) | + | 0 | - |
g(x) | 增 | 極大值 | 減 |
點評 本題考查函數(shù)的導數(shù)的應用,函數(shù)的最值的求法,考查轉(zhuǎn)化思想以及計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2-2$\sqrt{2}$ | B. | 2$\sqrt{2}$-2 | C. | $\sqrt{2}$-1 | D. | 1-$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com