選修4-1:幾何證明選講
如圖,PA,PB是⊙O的切線,切點(diǎn)分別為A,B,線段OP交⊙O于點(diǎn)C.若PA=12,PC=6,求AB的長.

解:如圖所示,
延長PO交⊙O于D點(diǎn),連接AO,BO,AB交OP于點(diǎn)E.
∵PA與⊙O相切,∴PA2=PC•PD.
設(shè)⊙O的半徑為R,∵PA=12,PC=6.
∴122=6(6+2R),解得R=9.
∵PA,PB與⊙O都相切,∴PA=PB.
又∵OA=OB,∴OP垂直平分AB.
即OP⊥AB,AB=2OE.
在Rt△OAP中,
=

分析:延長PO交⊙O于D點(diǎn),連接AO,BO,AB交OP于點(diǎn)E.利用切割線定理即可得出⊙O的半徑R,利用切線長定理得到PA=PB,由半徑OA=OB,于是可得OP垂直平分AB.在Rt△OAP中,由面積即可得出AE,從而得出AB.
點(diǎn)評:熟練掌握圓的性質(zhì)、切割線定理、切線長定理、線段的垂直平分線的判定與性質(zhì)、“等積變形”是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點(diǎn)H,HB=2.
(1)求DE的長;
(2)延長ED到P,過P作圓O的切線,切點(diǎn)為C,若PC=2
5
,求PD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點(diǎn)A,D為PA的中點(diǎn),
過點(diǎn)D引割線交⊙O于B,C兩點(diǎn),求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個特征值為3,求另一個特征值及其對應(yīng)的一個特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經(jīng)過圓上O的點(diǎn)C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點(diǎn)D,使得CD=AC,連結(jié)AD交圓O于點(diǎn)E,連結(jié)BE與AC交于點(diǎn)F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習(xí)冊答案