精英家教網 > 高中數學 > 題目詳情
設函數f(x)=2x2-6x+3,x∈[1,4],則f(x)的最小值和最大值為( 。
分析:先求對稱軸方程,再根據二次函數的性質,結合x的取值范圍求解.
解答:解:對稱軸方程為 x=-
-6
2×2
=
3
2

∵a=2>0,
∴拋物線開口向上,且對稱軸∈[1,4],
∴當x=
3
2
時,y最小值=-
3
2
;當x=4時,y最大值=11.
故選D.
點評:此題考查二次函數的最值問題,可根據二次函數的性質,結合自變量的取值范圍解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

2、設函數f(x)=2x+3,g(x)=3x-5,則f(g(1))=
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

給定實數a(a≠
12
),設函數f(x)=2x+(1-2a)ln(x+a)(x>-a,x∈R),f(x)的導數f′(x)的圖象為C1,C1關于直線y=x對稱的圖象記為C2
(Ⅰ)求函數y=f′(x)的單調區(qū)間;
(Ⅱ)對于所有整數a(a≠-2),C1與C2是否存在縱坐標和橫坐標都是整數的公共點?若存在,請求出公共點的坐標;若不若存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
(2x+1)(3x+a)
x
為奇函數,則a=
-
3
2
-
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=2x+x-4,則方程f(x)=0一定存在根的區(qū)間為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=
-2x+m2x+n
(m、n為常數,且m∈R+,n∈R).
(Ⅰ)當m=2,n=2時,證明函數f(x)不是奇函數;
(Ⅱ)若f(x)是奇函數,求出m、n的值,并判斷此時函數f(x)的單調性.

查看答案和解析>>

同步練習冊答案