【題目】已知函數(shù)f(x)=2 sin( + )sin( ﹣ )﹣sin(π+x),且函數(shù)y=g(x)的圖象與函數(shù)y=f(x)的圖象關于直線x= 對稱.
(1)若存在x∈[0, ),使等式[g(x)]2﹣mg(x)+2=0成立,求實數(shù)m的最大值和最小值
(2)若當x∈[0, ]時不等式f(x)+ag(﹣x)>0恒成立,求a的取值范圍.
【答案】
(1)解:f(x)= sin(x+ )+sinx= cosx+sinx=2sin(x+ ).
函數(shù)y=g(x)的圖象上取點(x,y),關于直線x= 對稱點的坐標為( ﹣x,y),
代入f(x)=2sin(x+ ),可得y=2sin( ﹣x),
x∈[0, ),則 ﹣x∈[ , ],∴y∈[1,2],
等式[g(x)]2﹣mg(x)+2=0,可化為m=y+ ,
∴y= 時,m的最小值為2 ;m=1或2時,m的最大值為3
(2)解:當x∈[0, ]時,f(x)∈[﹣ ,1],g(﹣x)∈[﹣1,1],
∵當x∈[0, ]時不等式f(x)+ag(﹣x)>0恒成立,
∴a 或a
【解析】(1)先求出f(x),g(x)的解析式,確定g(x)∈[1,2],等式[g(x)]2﹣mg(x)+2=0,可化為m=y+ ,即可求實數(shù)m的最大值和最小值(2)當x∈[0, ]時,f(x)∈[﹣ ,1],g(﹣x)∈[﹣1,1],利用當x∈[0, ]時不等式f(x)+ag(﹣x)>0恒成立,求a的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】在一次趣味校園運動會的頒獎儀式上,高一、高二、高三代表隊人數(shù)分別為120人、120人、n人.為了活躍氣氛,大會組委會在頒獎過程中穿插抽獎活動,并用分層抽樣的方法從三個代表隊中共抽取20人在前排就座,其中高二代表隊有6人.
(1)求n的值;
(2)把在前排就座的高二代表隊6人分別記為a,b,c,d,e,f,現(xiàn)隨機從中抽取2人上臺抽獎.求a和b至少有一人上臺抽獎的概率;
(3)抽獎活動的規(guī)則是:代表通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù)x,y,并按如圖所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該代表中獎;若電腦顯示“謝謝”,則不中獎,求該代表中獎的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),其中是實數(shù).
(l)若 ,求函數(shù)的單調(diào)區(qū)間;
(2)當時,若為函數(shù)圖像上一點,且直線與相切于點,其中為坐標原點,求的值;
(3) 設定義在上的函數(shù)在點處的切線方程為,若在定義域內(nèi)恒成立,則稱函數(shù)具有某種性質(zhì),簡稱“函數(shù)”.當時,試問函數(shù)是否為“函數(shù)”?若是,請求出此時切點的橫坐標;若不是,清說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線與拋物線相交于不同的兩點.
(1)如果直線過拋物線的焦點,求的值;
(2)如果 ,證明:直線必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為1∶3,且成績分布在[40,100],分數(shù)在80以上(含80)的同學獲獎.按文、理科用分層抽樣的方法抽取200人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.
(1)求a的值,并計算所抽取樣本的平均值 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)填寫下面的2×2列聯(lián)表,并判斷能否有超過95%的把握認為“獲獎與學生的文、理科有關”?
文科生 | 理科生 | 合計 | |
獲獎 | 5 | ||
不獲獎 | |||
合計 | 200 |
附表及公式:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1的底面是等腰直角三角形,AB=AC=2,四棱錐C﹣ABB1A1的體積等于4.
(1)求AA1的值;
(2)求C1到平面A1B1C的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=lnx﹣ ax2﹣bx,若x=1是f(x)的極大值點,則a的取值范圍為( )
A.(﹣1,0)
B.(﹣1,+∞)
C.(0,+∞)
D.(﹣∞,﹣1)∪(0,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為
A. 9 B. 18 C. 27 D. 36
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com