用數(shù)學歸納法證明不等式:>1(n∈N*且n>1).
見解析
①當n=2時,左邊=>1,
∴n=2時不等式成立;
②假設(shè)當n=k(k≥2)時不等式成立,即>1,
那么當n=k+1時,
左邊=

>1+(2k+1)·>1.
綜上,對于任意n∈N*,n>1不等式均成立,原命題得證.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知a,b為正數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

用數(shù)學歸納法證明:對任意n∈N,成立.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用數(shù)學歸納法證明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用歸納假設(shè)證n=k+1時的情況,只需展開(  )
A.(k+3)3B.(k+2)3
C.(k+1)3D.(k+1)3+(k+2)3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

的展開式中,的系數(shù)為的系數(shù)為,其中
(1)求(2)是否存在常數(shù)p,q(p<q),使,對,恒成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列{an}滿足a1=1,且4an+1-anan+1+2an=9(n∈N?).
(1)求a2,a3,a4的值;
(2)由(1)猜想{an}的通項公式,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知n是正偶數(shù),用數(shù)學歸納法證明時,若已假設(shè)n=k(k≥2且為偶數(shù))時命題為真,則還需證明(  )
A.n=k+1時命題成立
B.n=k+2時命題成立
C.n=2k+2時命題成立
D.n=2(k+2)時命題成立

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

觀察下列等式:;……
則當時,              .(最后結(jié)果用表示)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在數(shù)列{an}中,an=1-+…+,則ak+1等于(  )
A.a(chǎn)kB.a(chǎn)k
C.a(chǎn)kD.a(chǎn)k

查看答案和解析>>

同步練習冊答案