已知函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=ax-(a+1)ln(x+1),其中a>0.
(1)求f(x)的單調(diào)區(qū)間;
(2)當(dāng)x>0時(shí),證明不等式:<ln(x+1)<x;
(3)設(shè)f(x)的最小值為g(a),證明不等式:-1<ag(a)<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù)處取得極值2。
(Ⅰ)求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)滿足什么條件時(shí),函數(shù)在區(qū)間上單調(diào)遞增?
(Ⅲ)若為圖象上任意一點(diǎn),直線與的圖象切于點(diǎn)P,求直線的斜率的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
定義在上的函數(shù),對于任意的實(shí)數(shù),恒有,且當(dāng)時(shí),。
(1)求及的值域。
(2)判斷在上的單調(diào)性,并證明。
(3)設(shè),,,求的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知函數(shù)的一系列對應(yīng)值如下表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)為奇函數(shù),為常數(shù),
(1)求實(shí)數(shù)的值;
(2)證明:函數(shù)在區(qū)間上單調(diào)遞增;
(3)若對于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本題12分)
已知函數(shù).
(1)求的定義域;
(2)在函數(shù)的圖象上是否存在不同的兩點(diǎn),使得過這兩點(diǎn)的直線平行于x軸;
(3)當(dāng),b滿足什么條件時(shí),在上恒取正值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定義在(-∞,—1)∪(1,+∞)上的奇函數(shù)滿足:①f(3)=1;②對任意的x>2, 均有f(x)>0,③對任意的x>0,y>0.均有f(x+1)+f(y+1)=f(xy+1)
⑴試求f(2)的值;
⑵證明f(x)在(1,+∞)上單調(diào)遞增;
⑶是否存在實(shí)數(shù)a,使得f(cos2θ+asinθ)<3對任意的θ(0,π)恒成立?若存在,請求出a的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)已知函數(shù)
(1)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2d/9/jdksl1.png" style="vertical-align:middle;" />,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com