A={x|x2+x-6=0},B={x|mx+1=0},且A∪B=A,則m的取值范圍是
 
分析:通過解二次方程化簡(jiǎn)集合A,利用A∪B=A?B⊆A;分類討論求集合B中的一次方程,利用兩個(gè)集合間的包含關(guān)系求出m的值.
解答:解:A={x|x2+x-6=0}={2,-3}
∵A∪B=A∴B⊆A
當(dāng)m=0時(shí),B=∅,滿足B⊆A
當(dāng)m≠0時(shí),B={-
1
m
}
∵B⊆A
-
1
m
=2或-
1
m
=-3

解得m=-
1
2
或m= 
1
3

故m的取值為{0,-
1
2
1
3
}
故答案為:{0,-
1
2
1
3
}
點(diǎn)評(píng):本題考查解決集合間的關(guān)系時(shí)先化簡(jiǎn)各集合、考查A∪B=A?B⊆A、考查分類討論的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于定義在D上的函數(shù)y=f(x),若同時(shí)滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對(duì)于D內(nèi)任意x2,當(dāng)x2∉[a,b]時(shí)總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡(jiǎn)要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡(jiǎn)要說明理由;
(2)(理)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(文)設(shè)f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對(duì)一切t∈R恒成立,求實(shí)數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|x2-x>0},則?UA等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-x2+x+2>0},B={x|-1<x<1},則A∩(?UB)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007廣州市水平測(cè)試)已知集合A={x|x2-x<0},B={x|-2<x<2},則A∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知全集U=R,集合A={x|x2+x-2<0},B={x|0<x<3},則圖中陰影部分所表示的集合為(  )
A、{x|-2<x≤0}B、{x|0<x<1}C、{x|1≤x<3}D、{x|x≤-2或x≥3}

查看答案和解析>>

同步練習(xí)冊(cè)答案