5.已知點O為△ABC內(nèi)一點,滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,則△AOB與△ABC的面積之比是$\frac{1}{3}$.

分析 可作圖,取AB中點D,從而有$\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OD}$,這樣即可得出$\overrightarrow{OC}=-2\overrightarrow{OD}$,從而有D,O,C三點共線,且得到$OD=\frac{1}{3}CD$,這樣便可得出△AOB與△ABC的面積之比.

解答 解:如圖,取AB中點D,則:$\overrightarrow{OA}+\overrightarrow{OB}=2\overrightarrow{OD}$;
∴由$\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{0}$得,$2\overrightarrow{OD}+\overrightarrow{OC}=\overrightarrow{0}$;
∴$\overrightarrow{OC}=-2\overrightarrow{OD}$;
∴D,O,C三點共線,且OD=$\frac{1}{3}CD$;
∴△AOB與△ABC的面積之比是$\frac{1}{3}$.
故答案為:$\frac{1}{3}$.

點評 考查向量加法的平行四邊形法則,共線向量基本定理,以及向量數(shù)乘的幾何意義,三角形的面積公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.已知向量$\overrightarrow a=(-2,3,1)$,$\overrightarrow b=(1,0,-1)$,則$|\overrightarrow a+\overrightarrow b|$=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.動圓M過定點(3,0),且與直線x=-3相切,設圓心M的軌跡為C.
(1)求C的方程;
(2)若過點P(6,0)的直線l與軌跡C交于A、B兩點,且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知命題p:對任意x∈R,都有x2+1>0,則命題p的否定為( 。
A.存在x0∈R,使得${x_0}^2+1>0$B.存在x0∈R,使得${x_0}^2+1≤0$
C.存在x0∈R,使得${x_0}^2+1<0$D.存在x0∈R,使得${x_0}^2+1≥0$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{4}^{x},x>0}\\{f(x+1)-1,x<0}\end{array}\right.$,則f(-$\frac{1}{2}$)+f($\frac{1}{2}$)=( 。
A.3B.5C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.《張丘建算經(jīng)》是我國北魏時期大數(shù)學家丘建所著,約成書于公元466-485年間.其中記載著這么一道題:某女子善于織布,一天比一天織得快,而且每天增加的數(shù)量相同.已知第一天織布5尺,30天共織布390尺,則該女子織布每天增加的尺數(shù)(不作近似計算)為( 。
A.$\frac{16}{29}$B.$\frac{16}{27}$C.$\frac{11}{13}$D.$\frac{13}{29}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.“b<a<0”是“$\frac{a}+\frac{a}>2$”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.函數(shù)y=$\sqrt{{{log}_{0.2}}(2-x)}$的定義域是[1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知單位向量$\overrightarrow{a}$、$\overrightarrow$滿足$\overrightarrow{a}$⊥$\overrightarrow$,則函數(shù)f(x)=(x$\overrightarrow{a}$+$\overrightarrow$)2 (x∈R)( 。
A.既不是奇函數(shù)也不是偶函數(shù)B.既是奇函數(shù)又是偶函數(shù)
C.是偶函數(shù)D.是奇函數(shù)

查看答案和解析>>

同步練習冊答案