15.已知單位向量$\overrightarrow{a}$、$\overrightarrow$滿足$\overrightarrow{a}$⊥$\overrightarrow$,則函數(shù)f(x)=(x$\overrightarrow{a}$+$\overrightarrow$)2 (x∈R)( 。
A.既不是奇函數(shù)也不是偶函數(shù)B.既是奇函數(shù)又是偶函數(shù)
C.是偶函數(shù)D.是奇函數(shù)

分析 由題意可得$\overrightarrow{a}$•$\overrightarrow$=0,函數(shù)f(x)=(x$\overrightarrow{a}$+$\overrightarrow$)2 =x2+1,由此可得函數(shù)的奇偶性.

解答 解:由題意可得$\overrightarrow{a}$•$\overrightarrow$=0,|$\overrightarrow{a}$|=|$\overrightarrow$|=1,
∴函數(shù)f(x)=(x$\overrightarrow{a}$+$\overrightarrow$)2 =x2+2$\overrightarrow{a}$•$\overrightarrow$x+1=x2+1,
顯然,函數(shù)f(x)為偶函數(shù),
故選C.

點評 本題主要考查兩個向量垂直的性質(zhì),函數(shù)的奇偶性的判斷,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知點O為△ABC內(nèi)一點,滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,則△AOB與△ABC的面積之比是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$\vec a$與$\vec b$為非零向量,$|\vec a+\vec b|=|\vec a-\vec b|$,且$(\vec a+\vec b)⊥(\vec a-\vec b)$,則$(\vec a+\vec b)$與$\vec b$的夾角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題p:?α∈R,cos(π+α)=cosα,命題q:?x∈R,x2+1>0,則下面結(jié)論正確的是( 。
A.p是假命題B.¬q是真命題C.p∨q是假命題D.p∨q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,AA1B1B是圓柱的軸截面,C是底面圓周上異于A,B的一點,AA1=AB=2.
(1)求證:平面AA1C⊥平面BA1C;
(2)若AC=BC,求幾何體A1-ABC的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga$\frac{1}{1-x}$,記F(x)=2f(x)+g(x)
(1)求F(x)的零點
(2)若關(guān)于x的方程F(x)=2m2-3m-5在區(qū)間[0,1)內(nèi)僅有一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}滿足:a0=0,a1=1,且a2n=an,a2n+1=an+1(n∈N*),則a2013=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}的首項為a1=1,且an+1=$\frac{{a}_{n}+4}{{a}_{n}+1}$,(n∈N*).
(1)求a2,a3的值,并證明:a2n-1<a2n+1<2;
(2)令bn=|a2n-1-2|,Sn=b1+b2+…+bn,證明:$\frac{9}{8}$[1-($\frac{1}{9}$)n]≤Sn<$\frac{7}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知離心率為e的橢圓Γ:$\frac{{x}^{2}}{{a}^{2}-4}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>2)的上、下焦點分別為F1和F2,過點(0,2)且不與y軸垂直的直線與橢圓交于M,N兩點,若△MNF2為等腰直角三角形,則e2=$9-3\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案