分析 根據(jù)幾何概型的概率公式求出對應(yīng)的測度,即可得到結(jié)論
解答 解:分別設(shè)兩個互相獨(dú)立的短信收到的時間為x,y.則所有事件集可表示為0≤x≤10,0≤y≤10.
由題目得,如果手機(jī)受則到干擾的事件發(fā)生,必有|x-y|≤3.
則該事件即為x-y=3和y-x=3在0≤x≤10,0≤y≤10的正方形中圍起來的圖形,
即圖中陰影區(qū)域,而所有事件的集合即為正方型面積102=100,
陰影部分的面積2×$\frac{1}{2}$(10-3)2=49,
所以陰影區(qū)域面積和正方形面積比值即為手機(jī)不受到干擾的概率為$\frac{49}{100}$.
故答案為:$\frac{49}{100}$
點(diǎn)評 本題主要考查幾何概型的概率的計算,分別求出對應(yīng)區(qū)域的面積是解決本題的關(guān)鍵,比較基礎(chǔ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (-∞,-3) | C. | ($\sqrt{2}$,2) | D. | (-8,-4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,1)∪(1,$\sqrt{2}$) | C. | (1,$\sqrt{2}$) | D. | ($\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}π{a}^{2}$ | B. | 3πa2 | C. | 6πa2 | D. | $\frac{3}{2}π{a}^{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com