已知
a
=(1,2)
,
b
=(0,1)
,
c
=(k,-2)
,若(
a
+2
b
)⊥
c
,則實(shí)數(shù)k=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,平面向量及應(yīng)用
分析:由向量的加減運(yùn)算和數(shù)乘,運(yùn)用向量垂直的條件:數(shù)量積為0,計(jì)算即可得到.
解答: 解:
a
=(1,2)
,
b
=(0,1)
,
c
=(k,-2)
,
a
+2
b
=(1,4)
,
(
a
+2
b
)⊥
c
,則(
a
+2
b
)•
c
=0,
即有k-8=0
解得,k=8.
故答案為:8.
點(diǎn)評(píng):本題考查向量的數(shù)量積的定義和性質(zhì),考查向量垂直的條件,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|-3<x≤5},B={x|m+1≤x≤2m-1},滿足B⊆A,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題;
①當(dāng)?x>1時(shí),lgx+
1
lgx
≥2;
②m+1>n是m>n成立的充分不必要條件;
③函數(shù)y=ax的圖象可以由函數(shù)y=4ax(其中a>0且a≠1)平移得到;
④對(duì)于任意△ABC角A,B,C滿足:sin2A=sin2B+sin2C-2sinBsinCcosA;
⑤定義:如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)a,b,c都在函數(shù)y=f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長(zhǎng),則稱y=f(x)為“三角形型函數(shù)”.函數(shù)h(x)=lnx,x∈[2,+∞)是“三角形型函數(shù)”.
其中正確命題的序嗎為
 
.(填上所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察等式:
1
3
×13+
1
2
×12+
1
6
×1=12,
1
3
×23+
1
2
×22+
1
6
×2=12+22,
1
3
×33+
1
2
×32+
1
6
×3=12+22+32,…
以上等式都是成立的,照此寫(xiě)下去,第2015個(gè)成立的等式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出數(shù)表:請(qǐng)?jiān)谄渲姓页?個(gè)不同的數(shù),使它們由小到大能構(gòu)成等比數(shù)列,則這5個(gè)數(shù)依次可以說(shuō)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={x|x2-2≤0},則下列關(guān)系正確的是(  )
A、0⊆MB、0∉M
C、0∈MD、2∈M

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sin(ωx+
π
6
)(ω>0)
圖象的兩條相鄰的對(duì)稱軸之間的距離為
π
2
,且該函數(shù)圖象關(guān)于點(diǎn)(x0,0)成中心對(duì)稱,x0∈[0,
π
2
]
,則x0=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(6n-2)2+(2m-2)2
2
5
,求m+n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域(0,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱f(x)為“一階比增函數(shù)”;若y=
f(x)
x2
在(0,+∞)上為增函數(shù),則稱f(x)為“二階比增函數(shù)”.把所有由“一階比增函數(shù)”組成的集合記為A1,把所有由“二階比增函數(shù)”組成的集合記為A2
(1)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈A1且f(x)∉A2,求實(shí)數(shù)h的取值范圍
(2)已知f(x)∈A2,且存在常數(shù)k,使得對(duì)任意的x∈(0,+∞),都有f(x)<k,求k的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案