【題目】如圖所示,正方體ABCD﹣A′B′C′D′的棱長為1,E、F分別是棱AA′,CC′的中點,過直線EF的平面分別與棱BB′、DD′交于M、N,設BM=x,x∈[0,1],給出以下四個命題:
①平面MENF⊥平面BDD′B′;
②當且僅當x= 時,四邊形MENF的面積最。
③四邊形MENF周長l=f(x),x∈0,1]是單調函數;
④四棱錐C′﹣MENF的體積v=h(x)為常函數;
以上命題中真命題的序號為 .
【答案】①②④
【解析】解:①連結BD,B′D′,則由正方體的性質可知,EF⊥平面BDD′B′,所以平面MENF⊥平面BDD′B′,所以①正確.
②連結MN,因為EF⊥平面BDD′B′,所以EF⊥MN,四邊形MENF的對角線EF是固定的,所以要使面積最小,則只需MN的長度最小即可,此時當M為棱的中點時,即x= 時,此時MN長度最小,對應四邊形MENF的面積最。寓谡_.
③因為EF⊥MN,所以四邊形MENF是菱形.當x∈[0, ]時,EM的長度由大變。攛∈[ ,1]時,EM的長度由小變大.所以函數L=f(x)不單調.所以③錯誤.
④連結C′E,C′M,C′N,則四棱錐則分割為兩個小三棱錐,它們以C′EF為底,以M,N分別為頂點的兩個小棱錐.因為三角形C′EF的面積是個常數.M,N到平面C'EF的距離是個常數,所以四棱錐C'﹣MENF的體積V=h(x)為常函數,所以④正確.
故答案為:①②④.
①利用面面垂直的判定定理去證明EF⊥平面BDD′B′.②四邊形MENF的對角線EF是固定的,所以要使面積最小,則只需MN的長度最小即可.③判斷周長的變化情況.④求出四棱錐的體積,進行判斷.
科目:高中數學 來源: 題型:
【題目】已知橢圓 ()的焦距為4,左、右焦點分別為,且 與拋物線: 的交點所在的直線經過.
(Ⅰ)求橢圓的方程;
(Ⅱ)過 的直線 與交于兩點,與拋物線無公共點,求的面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(n)=2n+1(n∈N*),集合A={1,2,3,4,5},B={3,4,5,6,7},記f(A)={n|f(n)∈A},f(B)={m|f(m)∈B},f(A)∩f(B)=( )
A.{1,2}
B.{1,2,3}
C.{3,5}
D.{3,5,7}
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2,點M在線段PD上.
(1)求證:AB⊥PC.
(2)若二面角M﹣AC﹣D的大小為45°,求BM與平面PAC所成的角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點P是曲線C: ﹣y2=1上的任意一點,直線l:x=2與雙曲線C的漸近線交于A,B兩點,若 =λ +μ ,(λ,μ∈R,O為坐標原點),則下列不等式恒成立的是( )
A.λ2+μ2≥
B.λ2+μ2≥2
C.λ2+μ2≤
D.λ2+μ2≤2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.
(1)證明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記函數f(x)= 的定義域為集合A,則函數g(x)= 的定義域為集合B,
(1)求A∩B和A∪B
(2)若C={x|p﹣2<x<2p+1},且CA,求實數p的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx.
(1)求函數g(x)=f(x+1)﹣x的最大值;
(2)若對任意x>0,不等式f(x)≤ax≤x2+1恒成立,求實數a的取值范圍;
(3)若x1>x2>0,求證: > .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com