已知點(m,n)在曲線
3
•y=
12-4x2
上,則m2+(n-1)2的取值范圍是( 。
分析:可將
3
•y=
12-4x2
兩端平方,化為橢圓方程(上半部分),將(m,n)代入方程,整理只含有n的關(guān)系式,利用n的取值范圍即可求得m2+(n-1)2的取值范圍.
解答:解:由
3
•y=
12-4x2
兩端平方后整理得:
y2
4
+
x2
3
=1(y≥0)
,
又點(m,n)在曲線
3
•y=
12-4x2
上,
n2
4
+
m2
3
=1(0≤n≤2)
,∴m2=3-
3n2
4
,
∴m2+(n-1)2=3-
3n2
4
+(n-1)2
=
1
4
(n-4)2
(0≤n≤2),
1≤
1
4
(n-4)2≤4
,即1≤m2+(n-1)2≤4.
故選C.
點評:本題考查橢圓的簡單性質(zhì),著重考查學(xué)生的化歸思想及綜合應(yīng)用知識解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線l1和l2相交于點M且l1⊥l2,點N∈l1.以A、B為端點的曲線段C上的任一點到l2的距離與到點N的距離相等.若△AMN為銳角三角形,|AM|=
17
,|AN|=3,且|BN|=6.
(1)曲線段C是哪類圓錐曲線的一部分?并建立適當?shù)淖鴺讼,求曲線段C所在的圓錐曲線的標準方程;
(2)在(1)所建的坐標系下,已知點P(m,n)在曲線段C上,直線l:mx+ny=1,求直線l被圓x2+y2=1截得的弦長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點A (0,)為圓心,1為半徑的圓相切,又知C的一個焦點與A關(guān)于y = x對稱.

    (1)求雙曲線C的方程;

    (2)若Q是雙曲線線C上的任一點,F1F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程;

    (3)設(shè)直線y = mx + 1與雙曲線C的左支交于A、B兩點,另一直線l經(jīng)過M (–2,0)及AB的中點,求直線ly軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建師大附中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,直線l1和l2相交于點M且l1⊥l2,點N∈l1.以A、B為端點的曲線段C上的任一點到l2的距離與到點N的距離相等.若△AMN為銳角三角形,,|AN|=3,且|BN|=6.
(1)曲線段C是哪類圓錐曲線的一部分?并建立適當?shù)淖鴺讼,求曲線段C所在的圓錐曲線的標準方程;
(2)在(1)所建的坐標系下,已知點P(m,n)在曲線段C上,直線l:mx+ny=1,求直線l被圓x2+y2=1截得的弦長的取值范圍.

查看答案和解析>>

同步練習冊答案