已知一個(gè)幾何體的三視圖及尺寸如圖所示,則該幾何體的體積為( 。
A、
5
3
12
B、
2
3
3
C、
3
6
D、
3
2
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由已知中的三視圖,可得該幾何體是由一個(gè)三棱柱,挖去一個(gè)三棱錐,所得的組合體,進(jìn)而可得答案.
解答: 解:由已知中的三視圖,可得該幾何體是:一個(gè)三棱柱挖掉一個(gè)三棱錐,所得的組合體,
∵三棱柱的體積V=
3
4
×12×2
=
3
2
,
挖去的棱錐體積V′=
1
3
×
3
4
×12×1
=
3
12
,
故該幾何體的體積為
3
2
-
3
12
=
5
3
12

故選:A.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是由三視圖求體積,其中分析出幾何體的形狀是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
25
+
y2
9
=1上的一點(diǎn)M到焦點(diǎn)F1的距離為2,N是MF1的中點(diǎn),O為原點(diǎn),則|ON|等于( 。
A、2
B、4
C、8
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐A-BCD中,AO⊥平面BCD;O,E分別是BD,BC的中點(diǎn),CA=CB=CD=BD=2,AB=AD=
2

(1)求異面直線AB與CD所成角的余弦值;
(2)求點(diǎn)E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a,b是異面直線,點(diǎn)P∉a∪b,下列命題:
(1)過P可作平面與a,b均平行;
(2)過P可作直線與a,b都相交;
(3)過P可作平面與a,b都垂直;
(4)過P可作直線a,b都垂直,
其中真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A是橢圓
x2
a2
+
y2
b2
=1(a>b>0)長(zhǎng)軸上的一個(gè)頂點(diǎn),若橢圓存在點(diǎn)P,使AP⊥OP,求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)若函數(shù)f(x)=2x2-ax-1在(0,1)內(nèi)存在x0,使得f(x0)=0,求a的取值范圍.
(2)方程mx2+2(m+3)x+2m+14=0有兩相異實(shí)根,一個(gè)大于4,一個(gè)小于4,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4x-4的定義域?yàn)閇t-2,t-1],對(duì)任意t∈R,求函數(shù)f(x)的最小值g(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+bx2-
4
27
b3(b>0),有且僅有兩個(gè)不同的零點(diǎn)x1,x2,則(  )
A、x1+x2>0,x1x2<0
B、x1+x2>0,x1x2>0
C、x1+x2<0,x1x2<0
D、x1+x2<0,x1x2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c,d是四條不重合的直線,其中c為a在平面α上的射影,d為b在平面α上的射影,則( 。
A、c∥d⇒a∥b
B、a⊥b⇒c⊥d
C、a∥b⇒c∥d
D、c⊥d⇒a⊥b

查看答案和解析>>

同步練習(xí)冊(cè)答案