15.在等差數(shù)列{an}中,已知前10項(xiàng)的和等于前5項(xiàng)的和,若a2+ak=0,則k的值等于( 。
A.14B.12C.8D.6

分析 利用等差數(shù)列的通項(xiàng)公式與求和公式即可得出.

解答 解:由已知可得:S10=S5
∴$\frac{10({a}_{1}+{a}_{10})}{2}$=$\frac{5({a}_{1}+{a}_{5})}{2}$,化為:a1+2a10-a5=0,
∴2a1+14d=0,∴a2+a14=0,
∴k=14.
故選:A.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.在極坐標(biāo)系中,點(diǎn)(2,$\frac{π}{3}$)到圓ρ=2cos θ的圓心的距離為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知x,y滿足$\left\{\begin{array}{l}x-y+1≤0\\ x+y-3≥0\\ y≤4\end{array}\right.$,若存在x,y使得2x+y≤a成立,則a的取值范圍是( 。
A.(2,+∞)B.[2,+∞)C.[4,+∞)D.[10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(x,-1),若$\overrightarrow{a}$∥($\overrightarrow{a}-\overrightarrow$),則$\overrightarrow{a}$,$\overrightarrow$的夾角為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在△ABC,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知c2sinAcosA+a2sinCcosC=4sinB,$cosB=\frac{{\sqrt{7}}}{4}$,D是線段AC上一點(diǎn),且${S_{△BCD}}=\frac{2}{3}$,則$\frac{AD}{AC}$=( 。
A.$\frac{4}{9}$B.$\frac{5}{9}$C.$\frac{2}{3}$D.$\frac{10}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)$f(x)=sin({ωx+φ})({ω>0,|φ|<\frac{π}{2}})$,若f(x)滿足f(x+π)=-f(x),且$f(0)=\frac{1}{2}$,則函數(shù)h(x)=2cos(ωx+φ)在區(qū)間$[{0,\frac{π}{2}}]$上的值域?yàn)椋ā 。?table class="qanwser">A.$[{-1,\sqrt{3}}]$B.$[{-2,\sqrt{3}}]$C.$[{-\sqrt{3},2}]$D.$[{1,\sqrt{3}}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有3f(x)+xf′(x)>0,則不等式(x-2018)3f(x-2018)+8f(-2)>0的解集是(2016,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知復(fù)數(shù)z=$\frac{3-i}{1+i}$(i是虛數(shù)單位),則z的實(shí)部是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知關(guān)于x的不等式|x+a|<b的解集為{x|2<x<4}.
(1)求實(shí)數(shù)a,b的值;
(2)求證:$2≤\sqrt{at+12}+\sqrt{bt}≤4$.

查看答案和解析>>

同步練習(xí)冊(cè)答案