4.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足${S_n}+n=2{a_n}(n∈{N^*})$.
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足${b_n}={a_n}•{log_2}({a_n}+1)(n∈{N^*})$,其前n項(xiàng)和為Tn,求Tn

分析 (1)利用公式an+1=Sn+1-Sn即可得出an+1+1=2(an+1),故數(shù)列{an+1}為等比數(shù)列,利用等比數(shù)列的通項(xiàng)公式得出an+1,從而得出an;
(2)化簡bn=n•2n-n,再使用分項(xiàng)求和和錯(cuò)位相減法求和得出Tn

解答 解:(1)∵Sn+n=2an,∴Sn+1+(n+1)=2an+1,
∴an+1+1=2an+1-2an,即an+1+1=2(an+1),
又a1+1=2a1,∴a1=1.
∴{an+1}是以2為首選,以2為公比的等比數(shù)列.
∴an+1=2n,∴an=2n-1.
(2)bn=(2n-1)log22n=n(2n-1)=n•2n-n.
∴Tn=1•2+2•22+3•23+…+n•2n-(1+2+3+…+n)
=1•2+2•22+3•23+…+n•2n-$\frac{(1+n)n}{2}$.
設(shè)1•2+2•22+3•23+…+n•2n=An
則1•22+2•23+3•24+…+n•2n+1=2An,
兩式相減得2+22+23+…+2n-n•2n+1=-An,
∴-An=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1=(1-n)•2n+1-2,
∴An=(n-1)•2n+1+2,
∴Tn=(n-1)•2n+1+2-$\frac{{n}^{2}+n}{2}$.

點(diǎn)評(píng) 本題考查了等比關(guān)系的判斷,數(shù)列通項(xiàng)公式的求法,錯(cuò)位相減法求和,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={x∈R|-2≤x≤4},B={x|x∈R,k+1≤x≤2k-1}.是否存在實(shí)數(shù)k,使得A∩B=∅?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在極坐標(biāo)系中,以(1,0)為圓心,且過極點(diǎn)的圓的極坐標(biāo)方程為( 。
A.ρ=1B.ρ=cosθC.ρ=2sinθD.ρ=2cosθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.等差數(shù)列{an}中,已知a5=1,則a4+a5+a6=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)在區(qū)間[n,m]上恒有f(x)∈[$\frac{n}{k}$,km]成立,則稱區(qū)間[n,m]為函數(shù)f(x)的“k度約束區(qū)間”,若區(qū)間[$\frac{1}{t}$,t](t>0)為函數(shù)f(x)=x2-tx+t2的“2度約束區(qū)間”,則實(shí)數(shù)t的取值范圍是( 。
A.(1,2]B.$(1,\root{3}{{\frac{3}{2}}}]$C.$({1,\sqrt{2}}]$D.$(\sqrt{2},2]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.A={α=$\frac{5kπ}{3}$,k∈Z},B={β=$\frac{3kπ}{2}$,k∈Z},A∩B={0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖是判斷輸入的整數(shù)x奇偶性的程序框圖:其中判斷框內(nèi)可以填入的條件是(  )
A.m=0B.x=0C.x=1D.m=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若隨機(jī)變量η的分布列如下:
η-2-10123
P0.10.20.20.30.10.1
則當(dāng)P(η<x)=0.8時(shí),實(shí)數(shù)x的取值范圍是(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.一個(gè)計(jì)算:12+32+52+…+9992的值的程序框圖如下,試編寫其程序

查看答案和解析>>

同步練習(xí)冊(cè)答案