【題目】選修4﹣5:不等式選講
已知函數(shù)f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥0的解集;
(2)若方程f(x)=x有三個(gè)不同的解,求a的取值范圍.

【答案】
(1)解:若a=0,f(x)=|x+1|﹣|x|= ,

∴當(dāng) x<﹣1時(shí),不等式 即﹣1≥0,解得x∈

當(dāng)﹣1≤x<0時(shí),不等式即 2x+1≥0,解得 x≥﹣ .綜合可得﹣ ≤x<0.

當(dāng)x≥0 時(shí),不等式即 1≥0,恒成立,故不等式的解集為x≥0.

綜上,不等式的解集為[﹣ ,+∞).


(2)解:設(shè)u(x)=|x+1|﹣|x|,則函數(shù)u(x)的圖象和 y=x的圖象如下圖:

由題意易知,把函數(shù)y=u(x)的圖象向下平移1個(gè)單位以內(nèi)(不包括1個(gè)單位)與y=x的圖象始終有3個(gè)交點(diǎn),

從而﹣1<a<0.


【解析】(1)若a=0,則f(x)= ,分 x<﹣1時(shí)、當(dāng)﹣1≤x<0時(shí)、當(dāng)x≥0 時(shí),三種情況,分別求得不等式的解集,再取并集,即得所求.(2)設(shè)u(x)=|x+1|﹣|x|,由題意易知,把函數(shù)y=u(x)的圖象向下平移1個(gè)單位以內(nèi)(不包括1個(gè)單位)與y=x的圖象始終有3個(gè)交點(diǎn),從而求得a的范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)fx)=(|x﹣2|+1)4,給出如下三個(gè)命題:①fx+2)是偶函數(shù);②fx)在區(qū)間(﹣∞,2)上是減函數(shù),在區(qū)間(2,+∞)上是增函數(shù);③fx)沒有最小值.其中正確的個(gè)數(shù)為(  )

A. 1 B. 2 C. 3 D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項(xiàng)和為,等比數(shù)列的前項(xiàng)和為,,.

(1),求的通項(xiàng)公式;

(2).

【答案】(1);(2)21或.

【解析】試題分析:(1)設(shè)等差數(shù)列公差為,等比數(shù)列公比為,由已知條件求出,再寫出通項(xiàng)公式;(2)由,求出的值,再求出的值,求出。

試題解析:設(shè)等差數(shù)列公差為,等比數(shù)列公比為,即.

(1)∵,結(jié)合,

.

(2)∵,解得或3,

當(dāng)時(shí),,此時(shí);

當(dāng)時(shí),,此時(shí).

型】解答
結(jié)束】
20

【題目】如圖,已知直線與拋物線相交于兩點(diǎn), ,且點(diǎn)的坐標(biāo)為.

1的值

2為拋物線的焦點(diǎn), 為拋物線上任一點(diǎn),的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時(shí),解不等式

(2)若關(guān)于的方程的解集中恰有一個(gè)元素,求的取值范圍;

(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查,某種商品在過去50天的銷量和價(jià)格均為銷售時(shí)間t(天)的函數(shù)且銷售量近似地滿足f(t)=-2t+200(1t50,tN),前30天價(jià)格為g(t)=t+30(1≤t≤30,tN),后20天價(jià)格為g(t)=45(31≤t≤50,tN).

(1)寫出該種商品的日銷售額S與時(shí)間t的函數(shù)關(guān)系式;

(2)求日銷售額S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,其中a>﹣1.若f(x)在R上是增函數(shù),則實(shí)數(shù)a的取值范圍是(
A.[e+1,+∞)
B.(e+1,+∞)
C.(e﹣1,+∞)
D.[e﹣1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線ba0),O為坐標(biāo)原點(diǎn),離心率,點(diǎn)在雙曲線上.

1)求雙曲線的方程;

2)若直線與雙曲線交于P、Q兩點(diǎn),且.|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為, 為坐標(biāo)原點(diǎn).

(Ⅰ)求橢圓的方程和離心率;

(Ⅱ)設(shè)點(diǎn),動(dòng)點(diǎn)在橢圓上,且軸的右側(cè),線段的垂直平分線軸相交于點(diǎn),求的最小值.

查看答案和解析>>

同步練習(xí)冊答案