半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程是(  )

A.(x-4)2+(y-6)2=6

B.(x+4)2+(y-6)2=6或(x-4)2+(y-6)2=6

C.(x-4)2+(y-6)2=36

D.(x+4)2+(y-6)2=36或(x-4)2+(y-6)2=36

 D

[解析] 由題意可設圓的方程為(xa)2+(y-6)2=36,

由題意,得=5,∴a2=16,∴a=±4.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

11、半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2012年人教A版高中數(shù)學必修二4.2直線、圓的位置關系練習卷(二) 題型:選擇題

半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程是(     )

A、(x-4)2+(y-6)2=6      B、(x4)2+(y-6)2=6

C、(x-4)2+(y-6)2=36     D、 (x4)2+(y-6)2=36

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( 。
A.(x-4)2+(y-6)2=6B.(x±4)2+(y-6)2=6
C.(x-4)2+(y-6)2=36D.(x±4)2+(y-6)2=36

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年高一(上)學分認定考試數(shù)學試卷(必修2)(解析版) 題型:選擇題

半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )
A.(x-4)2+(y-6)2=6
B.(x±4)2+(y-6)2=6
C.(x-4)2+(y-6)2=36
D.(x±4)2+(y-6)2=36

查看答案和解析>>

同步練習冊答案