建造一個容積為8m3,深為2m的長方體無蓋水池,如果池底和池壁的造價每平方米分別為120元和80元,則水池的最低造價為    
【答案】分析:欲求水池的最低造價,先設(shè)長x,則寬,列出總造價,是一個關(guān)于x的函數(shù)式,最后利用基本不等式求出此函數(shù)式的最小值即可.
解答:解:設(shè)長x,則寬,造價y=4×120+4x×80+×80≥1760,
當且僅當:4x×80=×80,即x=2時取等號.
故答案為:1760.
點評:本小題主要考查函數(shù)模型的選擇與應(yīng)用,屬于基礎(chǔ)題.解決實際問題通常有四個步驟:(1)閱讀理解,認真審題;(2)引進數(shù)學符號,建立數(shù)學模型;(3)利用數(shù)學的方法,得到數(shù)學結(jié)果;(4)轉(zhuǎn)譯成具體問題作出解答,其中關(guān)鍵是建立數(shù)學模型.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

建造一個容積為8m3,深為2m的長方體無蓋水池,如果池底的造價為每平方米120元,池壁的造價為每平方米80元,
(1)設(shè)池底的長為x m,試把水池的總造價S表示成關(guān)于x的函數(shù);
(2)如何設(shè)計池底的長和寬,才能使總造價S最低,求出該最低造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

建造一個容積為8m3,深為2m的長方形無蓋水池,如果池底和池壁的造價分別為120元/m2和80元/m2
(1)求總造價關(guān)于底面一邊長的函數(shù)解析式,并指出函數(shù)的定義域;
(2)求總造價的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

建造一個容積為8m3,深為2m的長方體無蓋水池,池底和池壁的造價每平方米分別為120元和80元,如果水池的總造價為1 760元,則長方體底面一邊長為
2
2
米.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某校要建造一個容積為8m3,深為2m的長方體無蓋水池,池底和池壁的造價每平方米分別為240元和160元,那么水池的最低總造價為
3520
3520
元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

建造一個容積為8m3,深為2m的長方體元蓋水池,如果池底和池壁的造價分別為每平方米120元和80元,問水池的長、寬各為多少米時總造價最低?最低造價是多少元?

查看答案和解析>>

同步練習冊答案