已知函數(shù).
(Ⅰ)若,求在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的極值點(diǎn);
(Ⅲ)若恒成立,求的取值范圍.
(Ⅰ);(Ⅱ)當(dāng)時(shí),的極小值點(diǎn)為和,極大值點(diǎn)為;當(dāng)時(shí),的極小值點(diǎn)為;當(dāng)時(shí),的極小值點(diǎn)為;(Ⅲ).
解析試題分析:(Ⅰ)時(shí),,先求切線斜率,又切點(diǎn)為,利用直線的點(diǎn)斜式方程求出直線方程;(Ⅱ)極值點(diǎn)即定義域內(nèi)導(dǎo)數(shù)為0的根,且在其兩側(cè)導(dǎo)數(shù)值異號(hào),首先求得定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/8b/2/1z5fg2.png" style="vertical-align:middle;" />,再去絕對(duì)號(hào),分為和兩種情況,其次分別求的根并與定義域比較,將定義域外的舍去,并結(jié)合圖象判斷其兩側(cè)導(dǎo)數(shù)符號(hào),進(jìn)而求極值點(diǎn);(Ⅲ)即,當(dāng)時(shí),顯然成立;當(dāng)時(shí),,當(dāng)時(shí),去絕對(duì)號(hào)得恒成立或恒成立,轉(zhuǎn)換為求右側(cè)函數(shù)的最值處理.
試題解析:的定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/8b/2/1z5fg2.png" style="vertical-align:middle;" />.
(Ⅰ)若,則,此時(shí).因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/96/3/1imaf2.png" style="vertical-align:middle;" />,所以,所以切線方程為,即.
(Ⅱ)由于,.
⑴ 當(dāng)時(shí),,,
令,得,(舍去),
且當(dāng)時(shí),;當(dāng)時(shí),,
所以在上單調(diào)遞減,在上單調(diào)遞增,的極小值點(diǎn)為.
⑵ 當(dāng)時(shí),.
① 當(dāng)時(shí),,令,得,(舍去).
若,即,則,所以在上單調(diào)遞增;
若,即, 則當(dāng)時(shí),;當(dāng)時(shí),,所以在區(qū)間上是單調(diào)遞減,在上單調(diào)遞增,的極小值點(diǎn)為.
② 當(dāng)時(shí),.
令,得,記,
若,即時(shí),,所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若方程有解,求實(shí)數(shù)m的取值范圍;
(3)若存在實(shí)數(shù),使成立,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)若曲線在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;
(Ⅱ)若函數(shù)在處取得極小值,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,現(xiàn)要在邊長(zhǎng)為的正方形內(nèi)建一個(gè)交通“環(huán)島”.正方形的四個(gè)頂點(diǎn)為圓心在四個(gè)角分別建半徑為(不小于)的扇形花壇,以正方形的中心為圓心建一個(gè)半徑為的圓形草地.為了保證道路暢通,島口寬不小于,繞島行駛的路寬均不小于.
(1)求的取值范圍;(運(yùn)算中取)
(2)若中間草地的造價(jià)為元,四個(gè)花壇的造價(jià)為元,其余區(qū)域的造價(jià)為元,當(dāng)取何值時(shí),可使“環(huán)島”的整體造價(jià)最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,函數(shù).
(Ⅰ)當(dāng)時(shí),求的最小值;
(Ⅱ)若在區(qū)間上是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(Ⅰ)若與在處相切,試求的表達(dá)式;
(Ⅱ)若在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅲ)證明不等式: .
查看答案和解析>>
科目:解答題
來(lái)源: 題型:已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的零點(diǎn);
(2)若對(duì)任意均有兩個(gè)極值點(diǎn),一個(gè)在區(qū)間內(nèi),另一個(gè)在區(qū)間外,
求的取值范圍;
(3)已知且函數(shù)在上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=在x=0,x=處存在極值。
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)函數(shù)y=f(x)的圖象上存在兩點(diǎn)A,B使得△AOB是以坐標(biāo)原點(diǎn)O為直角頂點(diǎn)的直角三角形,且斜邊AB的中點(diǎn)在y軸上,求實(shí)數(shù)c的取值范圍;
(Ⅲ)當(dāng)c=e時(shí),討論關(guān)于x的方程f(x)=kx(k∈R)的實(shí)根個(gè)數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,其中且.
(Ⅰ) 當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若時(shí),函數(shù)有極值,求函數(shù)圖象的對(duì)稱中心的坐標(biāo);
(Ⅲ)設(shè)函數(shù) (是自然對(duì)數(shù)的底數(shù)),是否存在a使在上為減函數(shù),若存在,求實(shí)數(shù)a的范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com