下圖所示的平面直角坐標(biāo)系中,在y軸正半軸(坐標(biāo)原點(diǎn)除外)上給定兩點(diǎn)A、B,試在x軸的正半軸(坐標(biāo)原點(diǎn)除外)上求一點(diǎn)C,使∠ACB取得最大值.
解:設(shè)點(diǎn)A坐標(biāo)為(0,a),點(diǎn)B坐標(biāo)為(0,b),0<b<a,點(diǎn)C坐標(biāo)為(x,0)(x>0),∠ACB=α,∠OCB=β,則∠OCA=α+β(0<α<), ∴tanα=tan[(α+β)-β]= 。=≤=. 當(dāng)且僅當(dāng)x=,即x=(x>0)時(shí)等號(hào)成立.因此當(dāng)x=時(shí),tanα取得最大值,∠ACB取得最大值. 思路分析:本題是一個(gè)含有識(shí)圖以及與三角函數(shù)有關(guān)的綜合題,首先根據(jù)圖形建立∠ACB某一三角函數(shù)的一個(gè)解析式,根據(jù)解析式和均值不等式求最值即可. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
2 |
| ||
3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com