在長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,則異面直線B1C與A1B的所成角的余弦值為(  )
A、
2
3
B、
4
5
C、
1
2
D、
2
2
分析:根據(jù)長方體相對的平面上的兩條對角線平行,得到兩條異面直線所成的角,這個角在一個可以求出三邊的三角形中,利用余弦定理得到結(jié)果.
解答:解:連接CD1,
則BA1∥CD1
∴∠B1CD1是兩條異面直線所成的角,
在△B1CD1中,由AB=BC=1,AA1=2,
得到B1C=
5
,CD1=
5
,AD1=
2

∴cos∠B1CD1=
5+5-2
2×5
=
4
5

故選B.
點評:本題考查異面直線所成的角,本題解題的關(guān)鍵是先做出角,再證明角就是要求的角,最后放到一個可解的三角形中求出.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在長方體ABCD-A'B'C'D'中,AB=
3
,AD=
3
,AA′=1,則AA′和BC′所成的角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A′B′C′D′中,用截面截下一個棱錐C-A′DD′,求棱錐C-A′DD′的體積與剩余部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•上海) 如圖,在長方體ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1.證明直線BC′平行于平面D′AC,并求直線BC′到平面D′AC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•青浦區(qū)二模)(理)在長方體ABCD-A'B'C'D'中,AB=2,AD=1,AA'=1.
求:
(1)頂點D'到平面B'AC的距離;
(2)二面角B-AC-B'的大。ńY(jié)果用反三角函數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知在長方體ABCD-A′B′C′D′中,點E為棱CC′上任意一點,AB=BC=2,CC′=1.
(Ⅰ)求證:平面ACC′A′⊥平面BDE;
(Ⅱ)若點P為棱C′D′的中點,點E為棱CC′的中點,求二面角P-BD-E的余弦值.

查看答案和解析>>

同步練習(xí)冊答案