已知兩個函數(shù)f(x)=8x2+16x-k,g(x)=2x3+5x2+4x.其中k實數(shù).若對?x1∈[-3,3],?x2∈[-3,3],使f(x1)≤g(x2),則k的取值范圍
 
考點:導數(shù)在最大值、最小值問題中的應(yīng)用
專題:綜合題,導數(shù)的綜合應(yīng)用
分析:若對?x1∈[-3,3],?x2∈[-3,3],使f(x1)≤g(x2),只需在∈[-3,3]上f(x)min≤g(x)min即可.分別利用二次函數(shù)的圖象與性質(zhì)與導數(shù)求出兩個最小值,列不等式求解即可.
解答: 解:若對?x1∈[-3,3],?x2∈[-3,3],使f(x1)≤g(x2),
只需在[-3,3]上f(x)min≤g(x)min,即可.
f(x)=8x2+16x-m=8(x+1)2-m-8,f(x)min=f(-1)=-m-8
g(x)=2x3+5x2+4x,g′(x)=6x2+10x+4=(x+1)(6x+4),
在x∈(-3,-1)∪(
2
3
,3],g′(x)>0,(-3,-1)與(
2
3
,3]是g(x)單調(diào)遞增區(qū)間.
在x∈(-1,
2
3
),g′(x)<0,(-1,
2
3
]是g(x)單調(diào)遞減區(qū)間.
所以g(x)的極小值為g(-
2
3
)=-
28
27

又g(-3)=-21,所以g(x)min=-21
所以-m-8≤-21,解得m的范圍為m≥13.
故答案為:[13,+∞).
點評:本題考查函數(shù)的最值及應(yīng)用,將問題轉(zhuǎn)化為f(x)min≤g(x)min是關(guān)鍵.考查邏輯推理、轉(zhuǎn)化計算等能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

記集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面區(qū)域分別為Ω1,Ω2.若在區(qū)域Ω1內(nèi)任取一點M(x,y).則點M落在區(qū)域Ω2的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若函數(shù)f(x)在區(qū)間(1,+∞)上有極小值點,求實數(shù)a的取值范圍;
(2)求所有的實數(shù)a,使得f(x)>0對x∈[-1,1]恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面給出某村委調(diào)查本村各戶收入情況作出的抽樣,閱讀并回答問題:
本村人口:1200人,戶數(shù)300,每戶平均人口數(shù)4人,應(yīng)抽戶數(shù):30戶,抽樣間隔:
1200
30
=40;
確定隨機數(shù)字:取一張人民幣,編碼的后兩位數(shù)為02;
確定第一樣本戶:編碼的后兩位數(shù)為02的戶為第一樣本戶;
確定第二樣本戶:02+40=42,42號為第二樣本戶;

(1)該村委采用了何種抽樣方法?
(2)抽樣過程中存在哪些問題,并修改.
(3)何處是用簡單隨機抽樣.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=cos(2x-
π
3
)-2sin2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[0,
π
2
],求f(x)的最大值及相應(yīng)的x值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(x1,x12)、B(x2,x22)是函數(shù)y=x2的圖象上任意不同兩點,依據(jù)圖象可知,線段AB總是位于A、B兩點之間函數(shù)圖象的上方,因此有結(jié)論
x12+x22
2
>(
x1+x2
2
2成立.運用類比思想方法可知,若點A(x1,sinx1)、B(x2,sinx2)是函數(shù)y=sinx(x∈(0,π))的圖象上的不同兩點,則類似地有結(jié)論
 
成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上的點M(點A對應(yīng)實數(shù)0,點B對應(yīng)實數(shù)1),如圖①;將線段AB圍成一個圓,使兩端點A、B恰好重合,如圖②;再將這個圓放在平面直角坐標系中,使其圓心在y軸上,點A的坐標為(0,1),在圖形變化過程中,圖①中線段AM的長度對應(yīng)于圖③中的弧ADM的長度,如圖③,圖③中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.

給出下列命題:①f(
1
4
)=1;②f(
1
2
)=0;③f(x)是奇函數(shù);④f(x)在定義域上單調(diào)遞增,則所有真命題的序號是
 
.(填出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1為正整數(shù),an+1=
an
2
,an為偶數(shù)
3an+1,an為奇數(shù)
,如果a1=5,則a1+a2+a3=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)y=f(x),部分x與y的對應(yīng)關(guān)系如表:
x 1 2 3 4 5 6 7 8 9
y 7 4 5 8 1 3 5 2 6
數(shù)列{xn}滿足x1=2,且對任意n∈N*,點(xn,xn+1)都在函數(shù)y=f(x)的圖象上,則x2014的值為( 。
A、2B、4C、6D、8

查看答案和解析>>

同步練習冊答案