13.函數(shù)f(x)=2x-ex+1.
(1)求f(x)的最大值;
(2)已知x∈(0,1),af(x)<tanx,求a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最大值;
(2)求出f(x)在(0,1)為正,a≤0時,符合題意,a>0時,通過討論①0<a≤1,②a>1時的情況,結(jié)合函數(shù)的單調(diào)性求出a的具體范圍即可.

解答 解:(1)f(x)=2x-ex+1,f′(x)=2-ex,
令f′(x)>0,解得:x<ln2,令f′(x)<0,解得:x>ln2,
∴f(x)在(-∞,ln2)遞增,在(ln2,+∞)遞減,
∴f(x)的最大值是f(ln2)=2ln2-1;
(2)x∈(0,1)時,f(x)在(0,ln2)遞增,在(ln2,1)遞減,
且f(0)=0,f(1)=3-e>0,∴f(x)>0,
∵tanx>0,∴a≤0時,af(x)≤0<tanx;
a>0時,令g(x)=tanx-af(x),
則g′(x)=$\frac{1}{{cos}^{2}x}$+a(ex-2),
∴g(x)在(0,1)遞增且g′(0)=1-a,
①0<a≤1時,g′(0)≥0,g′(x)≥0,
∴g(x)在(0,1)遞增,又g(0)=0,
∴此時g(x)>0,即af(x)<tanx成立,
②a>1時,g′(0)<0,g′(1)>0,
∴?x0∈(0,1),使得g′(x0)=0,
即x∈(0,x0)時,g′(x)<0,g(x)遞減,
又g(0)=0,
∴g(x)<0與af(x)<tanx矛盾,
綜上:a≤1.

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知正三棱錐P-ABC的外接球的半徑為2,且球心在點A,B,C所確定的平面上,則該正三棱錐的表面積是$3(\sqrt{15}+\sqrt{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若向量$\overrightarrow{a}$,$\overrightarrow$滿足:$\overrightarrow{a}$=(2,-3)、$\overrightarrow$=(x,6),且$\overrightarrow{a}$∥$\overrightarrow$.則|$\overrightarrow{a}$+$\overrightarrow$|的值為(  )
A.$\sqrt{5}$B.$\sqrt{13}$C.5D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知二階矩陣M有特征值λ=3,及對應(yīng)的一個特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,并且M對應(yīng)的變換將點(-1,2)變換成(9,15),求矩陣M.
(2)在極坐標(biāo)系中,設(shè)圓C經(jīng)過點P($\sqrt{3}$,$\frac{π}{6}$),圓心是直線$ρsin(\frac{π}{3}-θ)$=$\frac{\sqrt{3}}{2}$與極軸的交點,求圓C的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{lnx+k}{{e}^{x}}$(其中k∈R,e是自然對數(shù)的底數(shù)),f′(x)為f(x)導(dǎo)函數(shù).
(Ⅰ)若k=2時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若f′(1)=0,試證明:對任意x>0,f′(x)<$\frac{{e}^{-2}+1}{{x}^{2}+x}$恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=lnx.
(Ⅰ)若曲線$g(x)=f(x)+\frac{a}{x}-1$在點(2,g(2))處的切線與直線x+2y-1=0平行,求實數(shù)a的值;
(Ⅱ)若$h(x)=f(x)-\frac{{b({x-1})}}{x+1}$在定義域上是增函數(shù),求實數(shù)b的取值范圍;
(Ⅲ)若m>n>0,求證$\frac{m-n}{m+n}<\frac{lnm-lnn}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R)在其定義域內(nèi)有兩個不同的極值點,則實數(shù)a的取值范圍是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)分別寫出下列函數(shù):y=log2x,x∈[$\frac{1}{2}$,4],y=cosx,x∈[-$\frac{π}{3}$,$\frac{π}{2}$]的最小值和最大值;
(2)設(shè)函數(shù)y=f(x)的定義域為D,最小值為m,最大值為M,若m∈D且M∈D,則稱y=f(x),x∈D為“B函數(shù)”;
①從第(1)小題給出的兩個函數(shù)中,選出“B函數(shù)”;
②若f(x)=$\frac{1}{2}$x2-x+$\frac{3}{2}$,x∈[1,b]為“B函數(shù)”,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在平面直角坐標(biāo)系xOy中,點M的坐標(biāo)是(-1,$\sqrt{3}$).以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,則M的極坐標(biāo)為( 。
A.(2,$-\frac{2π}{3}$)B.(2,$-\frac{π}{3}$)C.(2,$\frac{π}{3}$)D.(2,$\frac{2π}{3}$)

查看答案和解析>>

同步練習(xí)冊答案