15.已知向量$\overrightarrow{a}$=(2k,3),$\overrightarrow$=( 5,1),且 $\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)k=( 。
A.$-\frac{9}{2}$B.$\frac{15}{2}$C.$-\frac{3}{10}$D.-5

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow{a}$∥$\overrightarrow$,∴2k-15=0,解得k=$\frac{15}{2}$.
故選:B.

點(diǎn)評(píng) 本題考查了向量共線定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.“0<x<5”是“-2<x<6”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=(1+a)lnx+$\frac{2(1-a){x}^{2}+1}{x}$(a∈R).
(1)當(dāng)a>1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意a∈(2,3)及x1,x2∈[1,3],恒有(m+ln3)(1-a)-2ln3>f(x1)-f(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知△ABC中,AB=$\sqrt{3}$,AC=1且B=30°,則△ABC的面積等于(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$ 或$\sqrt{3}$D.$\frac{\sqrt{3}}{4}$ 或$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給出下列四個(gè)命題:
①直線l平行于平面α內(nèi)的無數(shù)直線,則l∥α
②若直線l在平面α外,則l∥α
③若直線l∥b,直線b?α,則l∥α
④若直線l∥b,直線b?α,那么直線l就平行平面α內(nèi)的無數(shù)條直線
以上說法正確的是④.(將正確說法的序號(hào)填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.計(jì)算:${lg^2}2+{lg^2}5+2lg2•lg5+{log_8}9•{log_{27}}32+{π^{{{log}_π}2}}+{(3\frac{3}{8})^{-\frac{2}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式$\frac{lnx}{x}$-x+c≤0對(duì)?x∈(0,+∞)恒成立,則c的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\frac{sina}{sina+cosa}$=$\frac{1}{2}$,且向量$\overrightarrow{AB}$=(tanα,1),$\overrightarrow{BC}$=(2,tanα),則$\overrightarrow{AC}$等于( 。
A.(-2,3)B.(1,2)C.(4,3)D.(3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,若y軸上存在點(diǎn)A(0,2),使得$\overrightarrow{AM}•\overrightarrow{AF}=0$,則p的值為(  )
A.2或8B.2C.8D.4或8

查看答案和解析>>

同步練習(xí)冊答案