【題目】為調(diào)查某地人群年齡與高血壓的關(guān)系,用簡(jiǎn)單隨機(jī)抽樣方法從該地區(qū)年齡在20~60歲的人群中抽取200人測(cè)量血壓,結(jié)果如下:
高血壓 | 非高血壓 | 總計(jì) | |
年齡20到39歲 | 12 | 100 | |
年齡40到60歲 | 52 | 100 | |
總計(jì) | 60 | 200 |
(1)計(jì)算表中的、、值;是否有99%的把握認(rèn)為高血壓與年齡有關(guān)?并說明理由.
(2)現(xiàn)從這60名高血壓患者中按年齡采用分層抽樣的方法抽取5人,再從這5人中隨機(jī)抽取2人,求恰好一名患者年齡在20到39歲的概率.
附參考公式及參考數(shù)據(jù): =
P(k2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)有99.9%的把握(2)
【解析】【試題分析】(1)依據(jù)題設(shè)條件及22聯(lián)列表的數(shù)據(jù)建立方程求解;(2)借助題設(shè)條件運(yùn)用列舉法及古典概型計(jì)算公式求解:
(1)由, ,解得=88, =48; =52+ =140,
∴=≈30.857,
由于30.857>10.828,所以有99.9%的把握認(rèn)為“高血壓與年齡有關(guān)”.
(2)由分層抽樣方法知,年齡在20到39的患者中抽取的人數(shù)為1,設(shè)該人記為,年齡在40到60的患者中抽取的人數(shù)為4,這4人分別記為、、、,任取2人有{, },{, },{, },{, },{, },{, },{, },{, },{, },{, }共10種不同的選法,其中恰含1名年齡在20到39高血壓患者有{, },{, },{, },{, }共4種,
故選取的兩名高血壓患者中恰有含1名年齡在20到39的概率為=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2015年12月,華中地區(qū)數(shù)城市空氣污染指數(shù)“爆表”,此輪污染為2015年以來最嚴(yán)重的污染過程,為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到華中某城市2015年12月份某星期星期一到星期日某一時(shí)間段車流量與的數(shù)據(jù)如表:
時(shí)間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
的濃度(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
(1)由散點(diǎn)圖知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(提示數(shù)據(jù): )
(2)(I)利用(1)所求的回歸方程,預(yù)測(cè)該市車流量為12萬輛時(shí)的濃度;(II)規(guī)定:當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)的濃度平均值在內(nèi),空氣質(zhì)量等級(jí)為良,為使該市某日空氣質(zhì)量為優(yōu)或者為良,則應(yīng)控制當(dāng)天車流量不超過多少萬輛?(結(jié)果以萬輛為單位,保留整數(shù))參考公式:回歸直線的方程是,其中, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用分層抽樣的方法從某校學(xué)生中抽取一個(gè)容量為60的樣本,其中高二年級(jí)抽取20人,高三年級(jí)抽取25人,已知該校高一年級(jí)共有800人,則該校學(xué)生總數(shù)為人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分8分) 已知拋物線C:y=-x2+4x-3 .
(1)求拋物線C在點(diǎn)A(0,-3)和點(diǎn)B(3,0)處的切線的交點(diǎn)坐標(biāo);
(2)求拋物線C與它在點(diǎn)A和點(diǎn)B處的切線所圍成的圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=﹣2sin(2x+φ)(|φ|<π),若 ,則f(x)的一個(gè)單調(diào)遞增區(qū)間可以是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點(diǎn)數(shù)分別記為, .
(1)求直線與圓相切的概率;
(2)將, ,5的值分別作為三條線段的長(zhǎng),求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答
(1)已知2sinx=sin( ﹣x),求 的值;
(2)求函數(shù)f(x)=ln(sinx﹣ )+ 的定義域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com