4.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的漸近線方程為$y=±2\sqrt{2}x$,則此雙曲線的離心率等于3.

分析 由雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的漸近線方程為$y=±2\sqrt{2}x$,得到$\frac{a}$=2$\sqrt{2}$,再根據(jù)離心率公式計(jì)算即可.

解答 解:由雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的漸近線方程為$y=±2\sqrt{2}x$,
∴$\frac{a}$=2$\sqrt{2}$,
∵e=$\frac{c}{a}$=$\sqrt{1+\frac{^{2}}{{a}^{2}}}$=$\sqrt{1+8}$=3,
故答案為:3.

點(diǎn)評(píng) 本題考查雙曲線的方程和性質(zhì),主要考查雙曲線的離心率的求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知直線l1:3x+2y+1=0,l2:x-2y-5=0,設(shè)直線l1,l2的交點(diǎn)為A,則點(diǎn)A到直線${l_0}:y=-\frac{3}{4}x-\frac{5}{2}$的距離為(  )
A.1B.3C.$\frac{{5\sqrt{7}}}{7}$D.$\frac{{15\sqrt{7}}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知斜率$k=\frac{1}{2}$且過(guò)點(diǎn)A(7,1)的直線l1與直線l2:x+2y+3=0相交于點(diǎn)M.
(Ⅰ)求以點(diǎn)M為圓心且過(guò)點(diǎn)B(4,-2)的圓的標(biāo)準(zhǔn)方程C;
(Ⅱ)求過(guò)點(diǎn)N(4,2)且與圓C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.“k=1”是“直線$kx-y-3\sqrt{2}=0$與圓x2+y2=9相切”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.拋物線y=4x2的焦點(diǎn)到準(zhǔn)線的距離是( 。
A.4B.2C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若直線x+y+m=0與圓x2+y2=m相切,則m的值是( 。
A.0或2B.2C.$\sqrt{2}$D.$\sqrt{2}$或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=$\frac{2x-3}{x+1}$的圖象關(guān)于點(diǎn)P中心對(duì)稱,則點(diǎn)P的坐標(biāo)是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在三棱柱ABC-A1B1C1中,△ABC是正三角形,且A1A=AB,頂點(diǎn)A1在底面ABC上的射影是△ABC的中心.
(1)求證:AA1⊥BC;
(2)求直線A1B與平面BCC1B1所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖,網(wǎng)格紙上每個(gè)小正方形的邊長(zhǎng)為1,若粗線畫出的是某幾何體的三視圖,則此幾何體的體積為10.

查看答案和解析>>

同步練習(xí)冊(cè)答案