設函數(shù)f(x)=ab,其中向量a=(m,cos2x),b=(1+sin2x,1),x∈R,且y=f(x)的圖象經(jīng)過點(,2).
(1)求實數(shù)m的值;
(2)求f(x)的最小正周期.
(3)求f(x)在[0,]上的單調增區(qū)間.
解:(1)f(x)=ab=m(1+sin2x)+cos2x,
∵圖象經(jīng)過點(,2),
∴f()=m(1+sin)+cos=2,
解得m=1;
(2)當m=1時,f(x)=1+sin2x+cos2x=sin(2x+)+1,
∴T==π;
(3)x∈[0,],2x∈[0,π],
∴2x+∈[,]
≤2x+,得0≤x≤
∴f(x)在[0,]上的單調增區(qū)間為[0,].
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=msinx+cosx(x∈R)的圖象經(jīng)過點(
π
2
,1)

(Ⅰ)求y=f(x)的解析式,并求函數(shù)的最小正周期和單調遞增區(qū)間
(Ⅱ)若f(
π
12
)=
2
sinA
,其中A是面積為
3
3
2
的銳角△ABC的內(nèi)角,且AB=2,求AC和BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選考題
請從下列三道題當中任選一題作答,如果多做,則按所做的第一題計分,請在答題卷上注明題號.
22-1設函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定義域為R,求實數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當AC=1,BC=2時,求AD的長.
22-3已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)
上的點,點A的坐標為(1,0),O為坐標原點,點M在射線OP上,線段OM與半圓C上的弧AP的長度均為
π
3

(1)求以O為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標;
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

[選做題]本題包括A、B、C、D共4小題,請從這4小題中選做2小題,每小題10分,共20分.
A.如圖,AD是∠BAD的角平分線,⊙O過點A且與BC邊相切于點D,與AB,AC分別交于E、F兩點.求證:EF∥BC.
B.已知M=
.
1-2
3-7
.
,求M-1
C.已知直線l的極坐標方程為θ=
π
4
(ρ∈R),它與曲線C
x=1+2cosα
y=2+2sinα
(α為參數(shù))相較于A、B兩點,求AB的長.
D.設函數(shù)f(x)=|x-2|+|x+2|,若不等式|a+b|-|4a-b|≤|a|,f(x)對任意a,b∈R,且a≠0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=|x2+2x-1|,若a<b<-1,且f(a)=f(b),則ab+a+b的取值范圍為( 。
A、(-∞,-1)B、(-2,2)C、(-1,1)D、(-1,+∞)

查看答案和解析>>

同步練習冊答案