20.設(shè)a=log43,b=log34,c=log53,則( 。
A.a>b>cB.b>a>cC.b>c>aD.a>c>b

分析 利用對數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵0=log41<a=log43<log44=1,
b=log34>log33=1,
c=log53<log43=1,
∴b>a>c.
故選:B.

點評 本題考查三個數(shù)的大小的比較,是基礎(chǔ)題,解題時要認真審題,注意對數(shù)函數(shù)的單調(diào)性的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=Msin(ωx+φ)(M>0,|φ|<\frac{π}{2})$的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c,若(2a-c)cosB=bcosC,求$f(\frac{A}{2})$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知某個幾何體的三視圖如圖,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個幾何體的體積是$\frac{8000}{3}$ cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\vec n=(2,0,1)$為平面α的一個法向量,點A(-1,2,1)在α內(nèi),則P(1,2,-2)到平面α的距離為( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\sqrt{5}$C.$2\sqrt{5}$D.$\frac{{\sqrt{5}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖所示的程序的輸出結(jié)果為S=1320,則判斷框中應(yīng)填( 。
A.i≥9B.i≤9C.i≤10D.i≥10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,已知A(0,2),B(2,0),C(-2,-1)
(1)求BC邊上的高AH所在的直線方程;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.己知x0=-$\frac{π}{6}$是函數(shù)f(x)=sin(2x+φ)的一個極小值點,則f(x)的一個單調(diào)遞減區(qū)間是( 。
A.($\frac{π}{3}$,$\frac{5π}{6}$)B.($\frac{π}{6}$,$\frac{2π}{3}$)C.($\frac{π}{2}$,π)D.($\frac{2π}{3}$,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.從裝有兩個紅球和三個黑球的口袋里任取兩個球,那么互斥而不對立的兩個事件是( 。
A.“至少有一個黑球”與“都是黑球”
B.“至少有一個黑球”與“至少有一個紅球”
C.“恰好有一個黑球”與“恰好有兩個黑球”
D.“至少有一個黑球”與“都是紅球”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左、右焦點分別為F1,F(xiàn)2,一條直線l經(jīng)過點F1與橢圓交于A,B兩點.
(1)求△ABF2的周長;
(2)若l的傾斜角為$\frac{π}{4}$,求弦長|AB|.

查看答案和解析>>

同步練習(xí)冊答案