方程x2+(a-4)x+4-2a=0有兩個(gè)正實(shí)數(shù)根的充要條件是( 。
A.a(chǎn)<4B.0<a<2C.2<a<4D.a(chǎn)>4
設(shè)f(x)=x2+(a-4)x+4-2a,
要使方程x2+(a-4)x+4-2a=0有兩個(gè)正實(shí)數(shù)根,
△=(a-4)2-4(4-2a)≥0
f(0)=4-2a>0
-
a-4
2a
>0
,
a2≥0
a<2
0<a<4

解得0<a<2.
故選:B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有n2(n≥4)個(gè)正數(shù),排成n×n矩陣(n行n列的數(shù)表),其中每一行的數(shù)成等差數(shù)列,每一列的數(shù)成等比數(shù)列,并且所有公比都相等,且滿足a24=1,a42a43,

求:(1)公比q;
(2)用k表示a4k;
(3)求a11a22a33+…+ann的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

選修4-2:矩陣與變換
設(shè)矩陣M=
1a
b1

(I)若a=2,b=3,求矩陣M的逆矩陣M-1
(Ⅱ)若曲線C:x2+4xy+2y2=1在矩陣M的作用下變換成曲線C':x2-2y2=1,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有如下幾個(gè)說法:
①如果x1,x2是方程ax2+bx+c=0的兩個(gè)實(shí)根且x1<x2,那么不等式ax2+bx+c<0的解集為{x|x1<x<x2};
②當(dāng)△=b2-4ac<0時(shí),二次不等式 ax2+bx+c>0的解集為∅;
x-a
x-b
≤0
與不等式(x-a)(x-b)≤0的解集相同;
x2-2x
x-1
<3
與x2-2x<3(x-1)的解集相同.
其中正確說法的個(gè)數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)定義在[a,b](a≥-4)上的函數(shù)f(x),若函數(shù)g(x)=f(
x+4
+2m)
與f(x)的定義域與值域都相同,則實(shí)數(shù)m的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,且,則____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市松江區(qū)高三三模沖刺理科數(shù)學(xué)試卷(解析版) 題型:選擇題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市松江區(qū)高三三模沖刺文科數(shù)學(xué)試卷(解析版) 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市徐匯、金山、松江區(qū)高三下學(xué)期學(xué)習(xí)能力診斷理數(shù)學(xué)試卷(解析版) 題型:填空題

查看答案和解析>>

同步練習(xí)冊答案