【題目】命題p:x∈(﹣∞,0),2x>3x;命題q:x∈(0,+∞), >x3; 則下列命題中真命題是( )
A.p∧q
B.(¬p)∧q
C.(¬p)∨(¬q)
D.p∧(¬q)
【答案】A
【解析】解:根據(jù)指數(shù)函數(shù)圖象和性質(zhì),可知命題p:x∈(﹣∞,0),2x>3x為真命題, 命題q:x∈(0,+∞), ; 例如x=0.01,則 =0.1>0.13=x3 , 故為真命題,
根據(jù)復合命題真假判定,
p∧q是真命題,故A正確,
(¬p)∧q,(¬p)∨(¬q),p∧(¬q),是假命題,故B、C,D錯誤,
故選:A.
【考點精析】利用復合命題的真假對題目進行判斷即可得到答案,需要熟知“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,
(1)證明:PA∥平面EDB
(2)證明:平面BDE平面PCB
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)f(x)=cos2x﹣sin2x的圖象向左平移 個單位后得到函數(shù)F(x)的圖象,則下列說法正確的是( )
A.函數(shù)F(x)是奇函數(shù),最小值是
B.函數(shù)F(x)是偶函數(shù),最小值是
C.函數(shù)F(x)是奇函數(shù),最小值是﹣2
D.函數(shù)F(x)是偶函數(shù),最小值是﹣2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,|AB|=4,|AD|=2,O為AB中點,P,Q分別是AD和CD上的點,且滿足① = ,②直線AQ與BP的交點在橢圓E: + =1(a>b>0)上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)R為橢圓E的右頂點,M為橢圓E第一象限部分上一點,作MN垂直于y軸,垂足為N,求梯形ORMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的半焦距為 ,原點 到經(jīng)過兩點 的直線的距離為 .
(Ⅰ)求橢圓 的離心率;
(Ⅱ)如圖, 是圓 的一條直徑,若橢圓 經(jīng)過 兩點,求橢圓 的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若定義域為R的奇函數(shù)f(x)滿足f(1+x)=﹣f(x),則下列結(jié)論: ①f(x)的圖象關(guān)于點 對稱;
②f(x)的圖象關(guān)于直線 對稱;
③f(x)是周期函數(shù),且2個它的一個周期;
④f(x)在區(qū)間(﹣1,1)上是單調(diào)函數(shù).
其中正確結(jié)論的序號是 . (填上你認為所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在銳角△ABC中,a,b,c為角A,B,C所對的邊,且(b﹣2c)cosA=a﹣2acos2 .
(1)求角A的值;
(2)若a= ,則求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=ln(x2﹣x)的定義域為( )
A.(0,1)
B.[0,1]
C.(﹣∞,0)∪(1,+∞)
D.(﹣∞,0]∪[1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com