【題目】在①,且,②,且,③,且這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,若問(wèn)題中的存在,求出和數(shù)列的通項(xiàng)公式與前項(xiàng)和;若不存在,請(qǐng)說(shuō)明理由.
設(shè)為各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和,滿(mǎn)足________,是否存在,使得數(shù)列成為等差數(shù)列?
【答案】答案不唯一,具體見(jiàn)解析
【解析】
由,用換后得,兩式相減得,若選擇①,由可求得等差數(shù)列的通項(xiàng)公式及值,前項(xiàng)和;若選擇②,由得和的關(guān)系式,作為關(guān)于的二次方程,至少有正根,由根的分布得其條件是,得出與已知矛盾的結(jié)論,說(shuō)明不存在;若選擇③,由,同樣可求和.
解:選擇①,
因?yàn)?/span>,所以,兩式相減,得
,
即,又,所以,
因?yàn)?/span>,且,所以,
由,得,即,
把代入上式,得,
當(dāng)時(shí),由及,得,
所以,,滿(mǎn)足,可知數(shù)列是以3為首項(xiàng),以2為公差的等差數(shù)列.
數(shù)列的通項(xiàng)公式為,
數(shù)列的前項(xiàng)和為.
選擇②,
因?yàn)?/span>,所以,兩式相減,得
,
即,又,所以,
由,得,即,
因?yàn)橐阎獢?shù)列的各項(xiàng)均為正數(shù),所以,
因?yàn)殛P(guān)于的一元二次方程至少存在一個(gè)正實(shí)數(shù)解的充要條件是
,
解得,
這與已知條件矛盾,所以滿(mǎn)足條件的不存在.
(注:若存在兩個(gè)實(shí)數(shù)解分別為,,則,,
當(dāng)時(shí),的解一正一負(fù);當(dāng)時(shí),的解一正一零;
當(dāng)時(shí),的解均為正.
所以方程至少存在一個(gè)正實(shí)數(shù)解,當(dāng)且僅當(dāng).)
選擇③,因?yàn)?/span>,所以,兩式相減,得
,
即,又,所以,
由,得,又已知,
所以,,
由,得,,所以,
當(dāng)時(shí),由及得,
由,及,得,
所以和滿(mǎn)足,
可知數(shù)列是以3為首項(xiàng),以2為公差的等差數(shù)列,
數(shù)列的通項(xiàng)公式為,
數(shù)列的前項(xiàng)和為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,過(guò)點(diǎn)且不過(guò)點(diǎn)的直線(xiàn)與橢圓交于,兩點(diǎn),直線(xiàn)與直線(xiàn)交于點(diǎn).
(Ⅰ)若垂直于軸,求直線(xiàn)的斜率;
(Ⅱ)試判斷直線(xiàn)與直線(xiàn)的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市隨機(jī)選取位顧客,記錄了他們購(gòu)買(mǎi)甲、乙、丙、丁四種商品的情況,整理成如下統(tǒng)計(jì)表,其中“√”表示購(gòu)買(mǎi),“×”表示未購(gòu)買(mǎi).
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
85 | √ | × | × | × |
× | √ | × | × |
(Ⅰ)估計(jì)顧客同時(shí)購(gòu)買(mǎi)乙和丙的概率;
(Ⅱ)估計(jì)顧客在甲、乙、丙、丁中同時(shí)購(gòu)買(mǎi)中商品的概率;
(Ⅲ)如果顧客購(gòu)買(mǎi)了甲,則該顧客同時(shí)購(gòu)買(mǎi)乙、丙、丁中那種商品的可能性最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知數(shù)列{an}和{bn}滿(mǎn)足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù).
(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型科學(xué)競(jìng)技真人秀節(jié)目挑選選手的方式為:不但要對(duì)選手的空間感知、照相式記憶能力進(jìn)行考核,而且要讓選手經(jīng)過(guò)名校最權(quán)威的腦力測(cè)試,120分以上才有機(jī)會(huì)入圍.某重點(diǎn)高校準(zhǔn)備調(diào)查腦力測(cè)試成績(jī)是否與性別有關(guān),在該高校隨機(jī)抽取男、女學(xué)生各100名,然后對(duì)這200名學(xué)生進(jìn)行腦力測(cè)試.規(guī)定:分?jǐn)?shù)不小于120分為“入圍學(xué)生”,分?jǐn)?shù)小于120分為“未入圍學(xué)生”.已知男生入圍24人,女生未入圍80人.
(1)根據(jù)題意,填寫(xiě)下面的2×2列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有95%以上的把握認(rèn)為腦力測(cè)試后是否為“入圍學(xué)生”與性別有關(guān);
性別 | 入圍人數(shù) | 未入圍人數(shù) | 總計(jì) |
男生 | |||
女生 | |||
總計(jì) |
(2)用分層抽樣的方法從“入圍學(xué)生”中隨機(jī)抽取11名學(xué)生,求這11名學(xué)生中男、女生人數(shù);若抽取的女生的腦力測(cè)試分?jǐn)?shù)各不相同(每個(gè)人的分?jǐn)?shù)都是整數(shù)),分別求這11名學(xué)生中女生測(cè)試分?jǐn)?shù)平均分的最小值.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),是拋物線(xiàn)上的兩個(gè)動(dòng)點(diǎn),是坐標(biāo)原點(diǎn),向量,滿(mǎn)足.設(shè)圓的方程為.
(1)證明線(xiàn)段是圓的直徑;
(2)當(dāng)圓的圓心到直線(xiàn)的距離的最小值為時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的不等式2lnx≤ax2+(2a﹣2)x+1恒成立,則a的最小整數(shù)值是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2+2ax﹣lnx﹣1,a∈R.
(1)當(dāng)a時(shí),求f(x)的單調(diào)區(qū)間及極值;
(2)若a為整數(shù),且不等式f(x)≥x對(duì)任意x∈(0,+∞)恒成立,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:
①是偶函數(shù);②的最大值為;
③在有個(gè)零點(diǎn);④在區(qū)間單調(diào)遞增.
其中所有正確結(jié)論的編號(hào)是( )
A.①②B.①③C.②④D.①④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com