【題目】如圖,設(shè)橢圓 的離心率為, 分別為橢圓的左、右頂點(diǎn), 為右焦點(diǎn),直線的交點(diǎn)到軸的距離為,過點(diǎn)軸的垂線 上異于點(diǎn)的一點(diǎn),以為直徑作圓.

(1)求的方程;

(2)若直線的另一個(gè)交點(diǎn)為,證明:直線與圓相切.

【答案】(1) ;(2)證明見解析.

【解析】試題分析:

(1)結(jié)合題意可求得, ,則的方程為.

(2)由題意可得,直線與圓相切時(shí),直線的斜率為,結(jié)合(1)中求得的橢圓方程即可證得題中的結(jié)論.

試題解析:

(1)解:由題可知, ,∴,

設(shè)橢圓的方程為,

,得,∴, ,

的方程為.

(2)證明:由(1)可得: ,設(shè)圓的圓心為,則,

的半徑為

直線的方程為.

設(shè)過與圓相切的直線方程為,

,整理得: ,

,得,

又∵,

∴直線與圓相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,四邊形是矩形, 平面, . , 分別是線段的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)求與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)是棱長為2的正方體的棱的中點(diǎn),點(diǎn)在面所在的平面內(nèi),若平面分別與平面和平面所成的銳二面角相等,則點(diǎn)到點(diǎn)的最短距離是( )

A. B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(ex)=ax2﹣x,a∈R.
(1)求f(x)的解析式;
(2)求x∈(0,1]時(shí),f(x)的值域;
(3)設(shè)a>0,若h(x)=[f(x)+1﹣a]logxe對(duì)任意的x1 , x2∈[e3 , e1],總有|h(x1)﹣h(x2)|≤a+ 恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機(jī)構(gòu)為了解某地區(qū)中學(xué)生在校月消費(fèi)情況,隨機(jī)抽取了100名中學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費(fèi)金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個(gè)金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費(fèi)金額不低于550元的學(xué)生稱為“高消費(fèi)群”.

(1)求m,n的值,并求這100名學(xué)生月消費(fèi)金額的樣本平均數(shù) (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認(rèn)為“高消費(fèi)群”與性別有關(guān)?

高消費(fèi)群

非高消費(fèi)群

合計(jì)

10

50

合計(jì)

(參考公式: ,其中n=a+b+c+d)

P(K2≥k)

0.10

0.05

0.025

0.010

0.005

0.001

k

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若輸出的 ,則判斷框內(nèi)填入的條件可以是(
A.k≥7
B.k>7
C.k≤8
D.k<8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場在店慶一周年開展“購物折上折活動(dòng)”:商場內(nèi)所有商品按標(biāo)價(jià)的八折出售,折后價(jià)格每滿500元再減100元.如某商品標(biāo)價(jià)為1500元,則購買該商品的實(shí)際付款額為1500×0.8﹣200=1000(元).設(shè)購買某商品得到的實(shí)際折扣率= .設(shè)某商品標(biāo)價(jià)為x元,購買該商品得到的實(shí)際折扣率為y.
(1)寫出當(dāng)x∈(0,1000]時(shí),y關(guān)于x的函數(shù)解析式,并求出購買標(biāo)價(jià)為1000元商品得到的實(shí)際折扣率;
(2)對(duì)于標(biāo)價(jià)在[2500,3500]的商品,顧客購買標(biāo)價(jià)為多少元的商品,可得到的實(shí)際折扣率低于 ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】曲線的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

(1)寫出的直角坐標(biāo)方程,并且用 (為直線的傾斜角, 為參數(shù))的形式寫出直線的一個(gè)參數(shù)方程;

(2) 是否相交,若相交求出兩交點(diǎn)的距離,若不相交,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定投擲飛鏢3次為一輪,若3次中至少兩次投中8環(huán)以上為優(yōu)秀,現(xiàn)采用隨機(jī)模擬實(shí)驗(yàn)的方法估計(jì)某人投擲飛鏢的情況:先由計(jì)算器產(chǎn)生隨機(jī)數(shù)0或1,用0表示該次投標(biāo)未在8環(huán)以上,用1表示該次投標(biāo)在8環(huán)以上;再以每三個(gè)隨機(jī)數(shù)作為一組,代表一輪的結(jié)果,經(jīng)隨機(jī)模擬實(shí)驗(yàn)產(chǎn)生了如下20組隨機(jī)數(shù):

101 111 011 101 010 100 100 011 111 110

000 011 010 001 111 011 100 000 101 101

據(jù)此估計(jì),該選手投擲飛鏢三輪,至少有一輪可以拿到優(yōu)秀的概率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案