(本小題滿分13分)
已知拋物線、橢圓和雙曲線都經(jīng)過點(diǎn),它們在軸上有共同焦點(diǎn),橢圓和雙曲線的對(duì)稱軸是坐標(biāo)軸,拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn).
(1)求這三條曲線的方程;
(2)對(duì)于拋物線上任意一點(diǎn),點(diǎn)都滿足,求的取值范圍.
(1);(2)。
解析試題分析:(1)設(shè)拋物線方程為,將代入方程得
-------------------2分
由題意知橢圓、雙曲線的焦點(diǎn)為----------------3分
對(duì)于橢圓,
,
所以橢圓方程為----------------5分
對(duì)于雙曲線,
,
所以雙曲線方程為----------------7分
(2)設(shè)------------(8分)
由得---------------(9分)
恒成立------------------(10分)
則----------------(12分)
∴-----------(13分)
考點(diǎn):本題主要考查直線與拋物線、橢圓、雙曲線的定義及標(biāo)準(zhǔn)方程,二次函數(shù)的圖象和性質(zhì)。。
點(diǎn)評(píng):中檔題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題求橢圓、雙曲線標(biāo)準(zhǔn)方程時(shí),主要運(yùn)用了曲線的定義,求拋物線方程則利用了待定系數(shù)法。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,已知點(diǎn)是橢圓的右頂點(diǎn),若點(diǎn)在橢圓上,且滿足.(其中為坐標(biāo)原點(diǎn))
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn),當(dāng)時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
求下列各曲線的標(biāo)準(zhǔn)方程
(Ⅰ)實(shí)軸長為12,離心率為,焦點(diǎn)在x軸上的橢圓;
(Ⅱ)拋物線的焦點(diǎn)是雙曲線的左頂點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在中,兩個(gè)定點(diǎn),的垂心H(三角形三條高線的交點(diǎn))是AB邊上高線CD的中點(diǎn)。
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)斜率為2的直線交動(dòng)點(diǎn)C的軌跡于P、Q兩點(diǎn),求面積的最大值(O是坐標(biāo)原點(diǎn))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的兩焦點(diǎn)是F1(0,-1),F(xiàn)2(0,1),離心率e=
(1)求橢圓方程;
(2)若P在橢圓上,且|PF1|-|PF2|=1,求cos∠F1PF2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知拋物線C:y2=2px(p>0)的焦點(diǎn)F和橢圓的右焦點(diǎn)重合,直線過點(diǎn)F交拋物線于A、B兩點(diǎn).
(1)求拋物線C的方程;
(2)若直線交y軸于點(diǎn)M,且,m、n是實(shí)數(shù),對(duì)于直線,m+n是否為定值?若是,求出m+n的值,否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為1且過橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),與=(3,-1)共線.
(1)求橢圓的離心率;
(2)設(shè)M為橢圓上任意一點(diǎn),且(),證明為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長是短軸長的2倍,且經(jīng)過點(diǎn)(2,1),平行于直線在軸上的截距為,設(shè)直線交橢圓于兩個(gè)不同點(diǎn)、,
(1)求橢圓方程;
(2)求證:對(duì)任意的的允許值,的內(nèi)心在定直線。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
橢圓:的左、右頂點(diǎn)分別、,橢圓過點(diǎn)且離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于、兩點(diǎn)的任意一點(diǎn)作軸,為垂足,延長到點(diǎn),且,過點(diǎn)作直線軸,連結(jié)并延長交直線于點(diǎn),線段的中點(diǎn)記為點(diǎn).
①求點(diǎn)所在曲線的方程;
②試判斷直線與以為直徑的圓的位置關(guān)系, 并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com